首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated thermally promoted reactions of formaldehyde (H2CO) in very low temperature ices. No such reactions occurred in ices of pure formaldehyde. However, addition of trace amounts of ammonia (NH3) were sufficient to catalyze reactions at temperatures as low as 40 K. Similar reactions could take place in interstellar ices and in Comets and produce considerable amounts of organic molecules.  相似文献   

2.
We present a comparison between the IR spectrum of the galactic center source IRS 7 and the spectrum of a carbonaceous polymer from the Orgueil meteorite. We have obtained an almost perfect match between the two spectra in the region between 3020-2790 cm-1, which suggests that the chemical composition of the interstellar organic matter and that of the meteorite polymer are similar or that the meteoritic polymer could be a well preserved interstellar organic molecule. Assuming that the meteoritic polymer has the same C/H ratio as these interstellar molecules, we find that 45 % of the total abundance of carbon in the line of sight toward IRS 7 is trapped in such an interstellar organic grain material.  相似文献   

3.
Since a previous COSPAR review on this subject, the number of molecular species identified by astronomers in dense interstellar clouds or in the envelopes expelled by evolved stars has grown from about eighty to approximately one hundred. Recent detections in stellar envelopes include the radical CP, the second phosphorus-containing astronomical molecule; SiN, the first astronomical molecule with a Si-N bond; and the HCCN radical. In the dense interstellar clouds recent detections or verifications of previous possible identifications include the H3O+ ion, which is a critical intermediary in the production of H2O and O2; the CCO radical, which is isoelectronic with HCCN; the SO+ ion, which appears to be diagnostic of shock chemistry; two new isomers of cyanoacetylene, HCCNC and CCCNH; and the two cumulenes H2C3 and H2C4. Some recent work is also described on the mapping of interstellar clouds in multiple molecular transitions in order to separate variations in chemical abundance from gradients in physical parameters.  相似文献   

4.
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life.  相似文献   

5.
The abundance and composition of complex organic (carbonaceous) material in the interstellar dust is followed as the dust evolves in its cyclic evolution between diffuse and dense clouds. Interstellar extinction, laboratory and space analog experiments, dust infrared absorption spectra, the cosmic abundance of the condensible atoms, and space and ground-based observations of comet dust are used to impose constraints on the organic dust component as mantles on silicate cores.  相似文献   

6.
During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.  相似文献   

7.
An absorption feature at 3.4 micrometers has been observed in various lines-of-sight through the diffuse interstellar medium. Its position and width lead to an identification with the C-H stretching mode of solid organic material. A possible mechanism for the production of organic solids in the interstellar medium is UV photoprocessing of icy mantles which accrete on dust grains in dense clouds. Furthermore, thermally induced reactions involving formaldehyde molecules in the mantles could be an important source of organics. Laboratory simulation of these processes shows that a large variety of oxygen- and nitrogen-rich species may be produced. It is shown that the occurrence of periodic transient heating events plays an important role in the production of organic material in the ice mantles. Finally, it is pointed out how future missions like the Infrared Space Observatory (ISO) as well as analysis of comet material by Rosetta may be able to clarify the nature and evolution of interstellar organics.  相似文献   

8.
High molecular weight organic compounds are involved in the chemistry and physics of many astrophysical and planetary objects. They are or should be present in interstellar dust, in comets and meteorites, in the Giant planets and Titan, in asteroids Triton and icy satellites. They represent a class of very complex organic material, part of which may have played a role in the origin of life on Earth. Thus they directly concern prebiotic chemistry and exobiology.  相似文献   

9.
Complex organic molecules are widely observed in star-forming regions, although their formation mechanisms are not well understood. Solid-state chemistry is thought to play an important role, but the solid-state reaction network is poorly known. We provide a list of purely thermal reactions involving electronically stable reactants to complement existing grain chemistry networks. The kinetic parameters of the reactions are given when available. These reactions lead to the formation of complex organic molecules, which were not considered previously. Eventually, these complex molecules are either released into the gas phase or incorporated into the organic residue found in meteorites. Thermal reactions are important because they are not limited by the UV flux or the slow diffusion of the radicals, and because they involve both surface and mantle molecules. Thermal reactions represent an important step in the formation of complex organic molecules that constitute the primitive material of comets and asteroids.  相似文献   

10.
11.
It is suggested that the UV radiation, and shock and plasma phenomena which accompanied the hypervelocity impacts of solid bodies (meteorites and comets) onto the surface of the young Earth may have contributed to the synthesis of prebiotic organic molecules in the primitive atmosphere in a larger amount than was thought previously. The mechanisms responsible for this synthesis are discussed using information obtained from recent experimental and theoretical work on macroscopic hypervelocity impacts.  相似文献   

12.
The Diffuse Interstellar Bands (DIBs) are absorption lines observed in the line of sight toward reddened OB stars. Their ubiquitous detection in space indicates chemically stable and abundant carriers. High resolution spectroscopy led to the detection of substructures in the line profiles of a few DIBs, indicating a gas phase molecular origin of the carriers. Line profile studies are useful tools to derive information on the band carriers nature. In this paper we compared the velocity structure of the lambda 6613 angstroms DIB line profile to the NaD1 and CaII profiles toward 6 targets of the Perseus OB2 association.  相似文献   

13.
We review the properties of Quenched Carbonaceous Composite (QCC), a residue produced from a hydrocarbon plasma, and the properties of its derivatives. A. Sakata and his colleagues have shown that QCC has a 220 nm absorption band, visible fluorescence matching the extended red emission seen in reflection nebulae, and infrared absorption bands that correspond to the infrared emission features in reflection nebulae, HII regions, and planetary nebulae. These properties make QCC a strong candidate material as a laboratory analog to the carbonaceous material in the interstellar medium. QCC is distinguished from the PAH hypothesis in that (1) it is a condensate composed of aromatic and aliphatic molecules, as well as radicals; (2) it exhibits a 220 nm absorption that is very similar in wavelength to the 217 nm absorption in the interstellar medium; (3) it exhibits visible fluorescence consistent with that seen in reflection nebulae; and (4) the bands at 7.7 and 8.6 microns are caused by ketone bands in oxidized QCC. The aromatic component in QCC is thought to be typically 1-4 rings, with the majority being about 1-2 rings.  相似文献   

14.
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt.  相似文献   

15.
The possibility that the organic molecules that have been found near comets could have formed by UV photolysis of interstellar ices was investigated by simulating this process in the laboratory. It is found that oxygen rich organics containing C-OH, C-H and C=O groups are readily produced in this way. These results indicate that part of the organic material in comets may have formed by UV irradiation of ices, either in the pre-solar nebula or in the interstellar phase.  相似文献   

16.
Equilibrium models of diffuse interstellar material (ISM) near the Sun show a range of cloud densities, ionization, and temperatures which are consistent with data, although the local ISM must be inhomogeneous over ∼2 pc scales. The ISM close to the Sun has properties that are consistent with the sheetlike warm neutral (and partially ionized) gas detected in the Arecibo Millennium Survey. Local interstellar magnetic fields are poorly understood, but data showing weak polarization for nearby stars indicate dust may be trapped in fields or currents in the heliosheath nose region. Implications of this dust capture are widespread, and may impact the interpretation of the cosmic microwave background data. Observations of interstellar H0 inside of the solar system between 1975 and 2000 do not suggest any variation in the properties or structure of local interstellar H0 over distance scales of ∼750 AU to within the uncertainties.  相似文献   

17.
AstroNewt experiment explores the effects of earth gravity on the early development of Japanese red-bellied newt, Cynops pyrrhogaster. Since female newts keep spermatophore in cloaca, fertilized eggs could be obtained without mating. Fertilization of newt's egg occurs just prior to spawning, so that gonadotrophic cues applied to females in orbit leads to laying eggs fertilized just in space. A property of newt being kept in hibernation at low temperature may be of great help for the space experiment carried out with much limited resources. A general outline of the AstroNewt project is shown here in addition to some technical advances for the development of the project. Experimental schemes of two space experiments (IML-2 in summer 1994 and unmanned SFU at the beginning of 1995) are also shown.  相似文献   

18.
Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space.  相似文献   

19.
The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earth's moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.  相似文献   

20.
Radiation biology in space: a critical review.   总被引:12,自引:0,他引:12  
A short summary of the results of radiobiological studies in space or on respective particles on ground will be given. Among the various types of radiation in space, the effect of heavy ions with high energy (HZE-particles) are most essential. Thus, radiobiology in space concerns mostly to the effect of these particles, in cells and in whole organism. Cell death, mutation and malignant transformation are the relevant endpoints, with can be studied on ground with heavy ions of different energy with suitable accelerators or in space, especially by the BIOSTACK concept. In space, however, the effect of microgravity has to be considered as well and there are hints, that under weightlessness the biological effect of radiation may be enhanced. There are still open questions to be answered concerning radioprotection of man in space. Further experiments are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号