共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
研究了一种星敏感器一陀螺组合定姿方式中的姿态敏感器误差的实时在轨标定方法。首先,选择直观的欧拉角作为姿态描述参数,根据星敏感器和陀螺的测量原理建立星敏感器一陀螺在轨标定的测量方程和状态方程,并以此建立数学模型。其次,采用简单高效的EKF(ExtendedKalmanFilter,扩展卡尔曼滤波)作为估值算法,进行了在轨标定数值仿真。对于航天器姿态定向中出现的姿态角和星敏感器安装角之间的耦合问题,通过在特定姿态通道上施加简单姿态机动实现了解耦。数值结果表明,该实时在轨标定方法,尤其是所提出的姿态角和星敏感器安装角解耦策略,可以实现对航天器姿态的实时精确估计以及对星敏感器安装误差、陀螺常值漂移和相关漂移等误差的实时在轨标定。该方法可用于航天器姿态测量设备的实时在轨标定和航天器姿态的高精度实时确定。 相似文献
3.
4.
针对半球谐振陀螺受温度影响出现零位漂移的问题,以测温电路温度为基准,建立温度频率函数实时解算温度,提出一种基于粒子群优化(PSO)算法的半球谐振陀螺惯导系统陀螺温度补偿方法。在求解温度时,需要先将温度频率函数转换为一元三次方程,存在测试计算量大的问题。引入逆向拟合思想,建立频率温度函数,提高陀螺输出温度实时性和降低测试计算量,替代了传统陀螺测温硬件电路,为惯导系统轻小型设计提供新思路。考虑温度变化、温度变化率以及两者的交叉项,建立温度补偿模型,引入PSO算法求解模型系数。温度试验结果表明,在温箱温度为-40~50 ℃内,补偿后的半球谐振陀螺的零偏稳定性较补偿前提升了46%。 相似文献
5.
半球谐振陀螺谐振频率的跟踪精度与稳定性很大程度上决定了陀螺的性能.通过分析半球谐振陀螺的频率特性以及锁相环基本原理,设计了基于锁相环的半球谐振陀螺频率跟踪方案,并用FPGA进行全数字化实现.半球谐振陀螺采用真空封装,内部温度难以测量,然而其谐振频率与温度具有很好的线性相关性,因此可采用谐振频率对陀螺温度进行测量.传统的频率跟踪方案一般采用模拟锁相环实现,其缺点是频率值隐含于输出的正弦波中,无法供后继测量模块使用,本文所设计的FPGA全数字方案可弥补这一缺陷.根据陀螺谐振频率与温度之间的关系,给出了利用跟踪频率测温的分辨率公式并进行了相关实验.实验结果显示,谐振频率为4440Hz时频率跟踪稳态相对误差可达10-7量级,利用跟踪频率测温的分辨率可达0.0042℃. 相似文献
6.
获取高精度事后姿态数据是提高遥感平台成像质量的必要条件之一,离线处理可有效降低敏感器测量误差,从而获得更高的姿态确定精度。基于滤波的校正方法中,星敏感器低频误差(LFE)与陀螺漂移将产生耦合影响导致校正精度低,本文针对该问题推导了耦合误差的数学模型,并设计了一种两步双向平滑事后处理算法,将陀螺漂移与低频误差分两步校正,通过反复滤波剥离陀螺漂移与低频误差。同时,针对低频误差参数收敛速度慢、噪声参数调节困难的问题,利用一种基于极大似然估计(MLE)的固定窗口自适应双向滤波算法进行处理以获得更好的噪声估计,提高了收敛速度和收敛精度。文中仿真工况下,离线姿态确定精度可达到0.8″(3σ),低频误差参数完全收敛时间不超过4个轨道周期。 相似文献
7.
8.
9.
10.
11.
12.
针对空间平台在高轨道机动变轨过程中自主导航的需求,采用了基于Kalman滤波器的捷联惯导与星敏感器的组合导航方案。结合Kalman滤波中协方差更新的误差分配分析方法,分析了影响空间平台状态估计误差的主要因素。采用适用于高轨道的球谐重力模型,运用STK工具包设计了变轨机动轨迹,将该轨迹应用于组合导航方案的仿真验证。仿真结果表明,量测噪声是影响空间平台姿态精度的主要因素,加速度计零偏对变轨过程速度精度有决定性影响,改善两者的精度可以实现空间平台机动变轨的高精度自主导航。 相似文献
13.
14.
15.
星敏感器是一类具有自主高精度姿态测量能力的仪器,输出姿态精度可达到角秒级。但实际组合导航应用中,星敏感器安装误差往往可达角分级,远远大于仪器本身误差,影响其使用品质,因此有必要在使用前对星敏感器安装误差进行建模标定。研究发现,星敏感器安装误差与惯导姿态误差存在耦合关系,难于分离。设计了一种快速标定方法,利用惯导输出姿态、位置信息以及星敏感器姿态输出构造观测量,建立卡尔曼滤波模型,通过滤波估计实现安装误差的地面标定。仿真结果表明,载体需要进行2个轴向上的机动才能将星敏感器三轴安装误差估计出来。相较于依靠外部基准姿态进行标定的方案,本方法具有快速高效、可操作性强等优点。 相似文献
16.
在星敏感器的使用过程中,由于外界环境的影响及传感器自身的限制,拍摄出来的星图不可避免地存在一些噪声,因此对星图进行去噪处理是一项非常重要的工作。针对传统高斯模板滤波存在的引入邻域噪声、无法自行根据星图特性修正等造成去噪效果不好的问题,提出了一种改进的星图降噪算法。该方法在滤波前先进行坏点剔除工作,并采用高斯低通滤波与高通滤波结合的方式对图像进行处理,在抑制噪声的同时有效地保留了星点信号。通过阐述星敏感器的工作原理,分析星图的噪声特性,对星图滤波去噪算法进行研究,并进行模拟星图影像提取星点坐标实验。结果表明:使用该算法进行滤波比传统的高斯滤波算法提取的质心坐标精确度更高,较传统方法横坐标提高0.00538个像素点,纵坐标提高0.0077个像素点,证实了图像处理算法的有效性。 相似文献
17.
18.
针对栅格算法易受邻域星点影响导致误匹配的问题,提出了一种结合角距特征的改进栅格星图识别算法。首先介绍了改进栅格算法的原理,其次设计了融合栅格识别模式和星角距识别模式的算法实现流程,最后开展了基于不同视角下的大视场仿真星图的算法试验验证和性能分析。结果表明,由于角距特征具有旋转不变性和不易受观测星邻域星点分布影响等特点,结合角距特征对失效观测星进行再匹配的改进栅格算法,在兼顾存储量需求小、运行速度快等优势的同时,识别率和鲁棒性也得到了提升,最高识别率可达98.88%,在位置噪声干扰以及缺失星干扰下,改进算法的识别率仍可保持在95%,说明算法鲁棒性强,具有较好的应用前景。 相似文献
19.
Simulated star maps serve as convenient inputs for the test of a star sensor, whose standardability mostly depends on the centroid precision of the simulated star image, so it is necessary to accomplish systematic error compensation for the simple Gaussian PSF(or SPSF, in which PSF denotes point spread function). Firstly, the error mechanism of the SPSF is described, the reason of centroid deviations of the simulated star images based on SPSF lies in the unreasonable sampling positions(the centers of the covered pixels) of the Gaussian probability density function. Then in reference to the IPSF simulated star image spots regarded as ideal ones, and by means of normalization and numerical fitting, the pixel center offset function expressions are got, so the systematic centroid error compensation can be executed simply by substituting the pixel central position with the offset position in the SPSF. Finally, the centroid precision tests are conducted for the three big error cases of Gaussian radius r = 0.5, 0.6, 0.671 pixel, and the centroid accuracy with the compensated SPSF(when r = 0.5) is improved to 2.83 times that of the primitive SPSF, reaching a 0.008 pixel error, an equivalent level of the IPSF. Besides its simplicity, the compensated SPSF further increases both the shape similarity and the centroid precision of simulated star images, which helps to improve the image quality and the standardability of the outputs of an electronic star map simulator(ESS). 相似文献