共查询到19条相似文献,搜索用时 46 毫秒
1.
分析航天元器件发展现状和现阶段面临的问题,从航天用户角度提出航天元器件自主发展的总体思路,提出从责任落实、制度建设、需求梳理、优化统型、供应商管理等方面加强工作的建议。 相似文献
2.
概述近年来国内外RF MEMS器件在航天领域的部分应用及发展趋势,重点介绍了RF MEMS开关、RF MEMS移相器和RF MEMS滤波器在航天领域的应用. 相似文献
3.
4.
国外航天元器件发展现状与思考 总被引:2,自引:1,他引:2
以航天元器件供应与采购问题为中心,分析国外航天元器件发展现状和国外宇航机构在航天元器件发展方面的主要做法与成功经验,并在借鉴吸收的基础上,结合我国的实际,对我国航天元器件的发展提出建议. 相似文献
5.
6.
从组织保障、资源配置、技术支撑保障等方面,简析美国、日本以及欧洲加强航天元器件管理、保障航天元器件的高可靠和稳定供应的实践经验与具体做法. 相似文献
7.
8.
9.
通过对技术驱动和应用驱动两种方式比较,结合航天SoC(片上系统)特点和国内微电子技术发展现状,提出一种通过系统级应用推动航天SoC持续和健康发展的道路。 相似文献
10.
11.
Norsk Romsenter 《Space Policy》1994,10(1)
Norway has recently published its national long-term plan for space activities (1993–1996) and the main points of this are reproduced here. While telecommunications, positioning and navigation and Earth observation are understandably given a high priority, there is also an emphasis on space transportation and space science, and a belief that Norwegian industry and research institutes are capable of gaining contracts beyond the agreed scope of the country's participation in ESA. 相似文献
12.
13.
D R Criswell 《Acta Astronautica》1981,8(9-10):1161-1171
Mankind has evolved in the biosphere from essentially another animal to the level that his industries and societies are powerful components of the life-cycles of Earth. Terrestrial industrial experience can be extended to the use of matter from the Moon and other non-terrestrial sources to create permanent habitats and industry in space. Space stations in low Earth orbit and small bases on the Moon can be the foci of early space industries for learning how to grow in space with local resources. Several near term and long range research topics appropriate to permanent human occupancy of space are reviewed. 相似文献
14.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals. 相似文献
15.
16.
This article explores the use of scenario analysis as a methodology to rigorously analyze potential space futures, particularly with respect to space security challenges, in the context of rapid and uncertain change across several dimensions of human space activities. The successful use of scenario analysis in other (e.g. corporate and military) sectors is described and results of an initial scenario analysis workshop are presented. Scenario analysis is recommended as a promising approach to evaluating the long-term consequences of various policy choices in the context of uncertainty, and as a process well-suited to fostering communication and building consensual knowledge among diverse stakeholders. 相似文献
17.
A briefing on the subject of US space policy was held in Washington in July 2009 by the American Academy of Arts and Sciences. Based around some of its recent publications, while emphasizing the US situation and direction, the briefing did not ignore the context of international space activity. In particular it considered China's spacefaring development and suggested ways of engaging more fruitfully with that country. This report presents a summary of the issues raised and recommendations made. 相似文献
19.
This paper surveys recent and current advancements of laser-induced ablation technology for space-based applications and discusses ways of bringing such applications to fruition. Laser ablation is achieved by illuminating a given material with a laser light source. The high surface power densities provided by the laser enable the illuminated material to sublimate and ablate. Possible applications include the deflection of Near Earth Objects – asteroids and comets – from an Earth-impacting event, the vaporisation of space structures and debris, the mineral and material extraction of asteroids and/or as an energy source for future propulsion systems. This paper will discuss each application and the technological advancements that are required to make laser-induced ablation a practical process for use within the space arena. Particular improvements include the efficiency of high power lasers, the collimation of the laser beam (including beam quality) and the power conversion process. These key technological improvements are seen as strategic and merit greater political and commercial support. 相似文献