首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-technique space geodetic analysis software named c5++ has been developed and allows one to combine data on the observation level. With SLR and VLBI modules being ready and tested, this software has been used to compute coordinate time series of the geodetic fundamental station TIGO, located near Concepción, Chile. It can be shown that the combination of space geodetic data on the observation level leads to a significant improvement of station position repeatability, which is an important measure for the stability of a station in the terrestrial reference frame. Moreover, it could be demonstrated that the geophysical signal of the post-seismic tectonic plate movement is usually more complete than detected by any of the two single-technique solutions. In addition, it has been confirmed that so-called nuisance parameters, which are relying on data from a single technique, are not biased when combing observations from different space geodetic techniques.  相似文献   

2.
Tropospheric delay is one of the major sources of error in VLBI (Very Long Baseline Interferometry) analysis. The principal component of this error can be accurately computed through reliable surface pressure data —hydrostatic delay— yet there is also a small but volatile component —wet delay— which is difficult to be modelled a priori. In VLBI analysis, troposphere delay is typically modelled in the theoretical delays using Zenith Hydrostatic Delays (ZHD) and a dry mapping function. Zenith Wet Delay (ZWD) is not modelled but estimated in the analysis process. This work studies inter alia the impact of including external GNSS estimates to model a priori ZWD in VLBI analysis, as well as other models of a priori ZWD.In a first stage, two different sources of GNSS troposphere products are compared to VLBI troposphere estimates in a period of 5 years. The solution with the best agreement to VLBI results is injected in the VLBI analysis as a priori ZWD value and is compared to other options to model a priori ZWD. The dataset used for this empirical analysis consists of the six CONT campaigns.It has been found that modelling a priori ZWD has no significant impact either on baseline length and coordinates repeatabilities. Nevertheless, modelling a priori ZWD can change the magnitude of the estimated coordinates a few millimeters in the up component with respect to the non-modelling approach. In addition, the influence of a priori ZWD on Earth Orientation Parameters (EOP) and troposphere estimates —Zenith Total Delays (ZTD) and gradients—has also been analysed, resulting in a small but significant impact on both geodetic products.  相似文献   

3.
4.
The point source list of the Wilkinson Microwave Anisotropy Probe (WMAP) is a uniform, all-sky catalogue of bright sources with flux density measurements at high (up to 94 GHz) radio frequencies. We investigated the five-year WMAP list to compile a new catalogue of bright and compact extragalactic radio sources to be potentially studied with Very Long Baseline Interferometry at millimeter wavelengths (mm-VLBI) and Space VLBI (SVLBI). After comparing the WMAP data with the existing mm-VLBI catalogues, we sorted out the yet unexplored sources. Using the 41, 61 and 94 GHz WMAP flux densities, we calculated the spectral indices. By collecting optical identifications, lower-frequency radio flux densities and VLBI images from the literature, we created a list of objects which have not been investigated with VLBI at 86 GHz before. With total flux density at least 1 Jy and declination above −40°, we found 37 suitable new targets. It is a nearly 25% addition to the known mm-VLBI sources. Such objects are also potentially useful as phase-reference calibrators for the future Japanese SVLBI mission ASTRO-G at its highest observing frequency (43 GHz). The phase-referencing capability of ASTRO-G would allow long integrations and hence better sensitivity for observing faint target sources close to suitable phase calibrators in the sky.  相似文献   

5.
Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements, obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth rotation and Reference frame Service (IERS). Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn, the global user community downloads nearly 1.2 Tbytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS, including background information about the system and its user communities, archive contents, available metadata, and future plans.  相似文献   

6.
Extracting the group and phase delays of interferometric observations produced in the Very Long Baseline Interferometry (VLBI) measurement concept requires a special fringe fitting and delay search algorithm for the recorded bandwidth. While fringe fitting is in use routinely for several megahertz wide channels in geodetic and astrometric VLBI with quasar observations, fringe fitting for artificial tones of very small bandwidth of artificial signals for Differential One-way Ranging (DOR) requires a different way of handling. In a project called Observing the Chang’E-3 Lander with VLBI (OCEL), the DOR tones emitted by the Chang’E-3 lander were observed in a standard geodetic VLBI mode with 8 or 4?MHz wide channels to maintain compatibility with the corresponding quasar observations. For these observations, we modified the existing fringe fitting program of the Haystack Observatory Processing Software (HOPS), fourfit, to properly handle narrow band DOR tones. The main motivations are that through this modification, the data of quasars and artificial radio sources can be processed in the existing geodetic analysis pipeline, and that the algorithm can be used for similar projects as well. In this paper, we describe the algorithm and show that the new algorithm produces much more reliable group delay results than using the standard fourfit algorithm. This is done by a simulation test and in particular by processing of real observations. It is shown that in many cases, systematic deviations of several nanoseconds, which are seen with the standard fourfit algorithm, can be avoided. The ultimate benefit of the new procedure is demonstrated by reducing the errors in delay triangle closures by at least a factor of 3, which, in the OCEL case, is from ~300 to ~100?ps.  相似文献   

7.
氢钟是甚长基线干涉仪(VLBI)中的一个关键系统。主要介绍与国际VLBI联测而建立的高质量频率标准的性能及氢钟的联接与技术要求。  相似文献   

8.
Very Long Baseline Interferometry (VLBI) allows to monitor universal time (UT1) by conducting regular international experiments. Such dedicated observation networks are equipped with different hardware components, which require different processing strategies when the data are correlated. As the timing units at each stations are usually offset with respect to universal time (UTC) this effect should be considered during correlation processing. Thus, it is investigated how neglecting of these offsets theoretically impacts the estimation of UT1. Three different strategies for the proper handling of the timing offset will be discussed and their advantages/drawbacks will be pointed out. Moreover, it is studied how neglecting of these timing offsets affects UT1 time-series and how such a missing correction can be applied a posteriori. Although the discussed effect is for most of the UT1 experiments smaller than the formal error of the estimates, it is important to consider station clock offsets properly in next-generation VLBI systems, which are expected to improve accuracy of results by about one order of magnitude.  相似文献   

9.
    
H2O maser emission associated with the massive star formation region W49N were observed with the Space-VLBI mission RadioAstron. The procedure for processing of the maser spectral line data obtained in the RadioAstron observations is described. Ultra-fine spatial structures in the maser emission were detected on space-ground baselines of up to 9.6 Earth diameters. The correlated flux densities of these features range from 0.1% to 0.6% of the total flux density. These low values of correlated flux density are probably due to turbulence either in the maser itself or in the interstellar medium.  相似文献   

10.
We examine the state of seven southern radio sources at the time of their RadioAstron AGN Survey observations. Both ATCA flux density monitoring data and Fermi light-curves are considered in determining the relative activity of the source. A simple hypothesis, that sufficiently compact source structure exists for detections on RadioAstron baselines when the source is in a flaring state, is qualitatively tested. We find four instances of RadioAstron detections during flaring radio states and four instances of RadioAstron non-detections during fading or quiescent radio states, in support of the hypothesis. However, we also find three instances of RadioAstron detections during quiescent or fading radio states, and two non-detections during a flaring state, indicating that the situation is (not unexpectedly) more complex. Radio and gamma-ray monitoring such as that described here, together with the full RadioAstron AGN Survey results, will allow a more thorough investigation of the dependencies of detections on baselines of >10 Earth diameters.  相似文献   

11.
Baseline lengths and their time-derivatives among 58 geodetic VLBI stations were fitted by using 4439 observing sessions from the International VLBI Service for Geodesy and Astrometry (IVS). First, the velocities of eight stations in Eurasian continent were set as unknown quantities. Then, two standard global solutions from 3523 IVS sessions and 1110 sessions from database code XA, respectively, were applied prior to all-station coordinates and the non-estimated station velocities. Finally, from the relations among the coordinates, velocities, baseline length and its time-derivative, two types of baseline post-adjustment (BPA) were used to estimate the velocities of the eight stations. We discuss the data processing details, including the effect of different prior values for the stations and the optimal solution.  相似文献   

12.
用于太阳系天体VLBI观测的时延模型   总被引:2,自引:0,他引:2  
VLBI观测技术可以用于对深空航天器的跟踪定位以及测速观测.这类近距离天体发出的射电信号波前是球面波.为此,本文提出了一个1ps精度下近距离射电天体地面VLBI观测时间延迟模型.  相似文献   

13.
Based on resolutions of the United Nations General Assembly, Regional Centres for Space Science and Technology Education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief summary on the status of the operation of the regional centres with a view to use them as information centres of the International Committee on Global Navigation Satellite Systems (ICG), and draws attention to their educational activities.  相似文献   

14.
         下载免费PDF全文
Submillimeter interferometry has the potential to image supermassive black holes on event horizon scales, providing tests of the theory of general relativity and increasing our understanding of black hole accretion processes. The Event Horizon Telescope (EHT) performs these observations from the ground, and its main imaging targets are Sagittarius A* in the Galactic Center and the black hole at the center of the M87 galaxy. However, the EHT is fundamentally limited in its performance by atmospheric effects and sparse terrestrial (u,v)-coverage (Fourier sampling of the image). The scientific interest in quantitative studies of the horizon size and shape of these black holes has motivated studies into using space interferometry which is free of these limitations. Angular resolution considerations and interstellar scattering effects push the desired observing frequency to bands above 500 GHz.
This paper presents the requirements for meeting these science goals, describes the concept of interferometry from Polar or Equatorial Medium Earth Orbits (PECMEO) which we dub the Event Horizon Imager (EHI), and utilizes suitable space technology heritage. In this concept, two or three satellites orbit at slightly different orbital radii, resulting in a dense and uniform spiral-shaped (u,v)-coverage over time. The local oscillator signals are shared via an inter-satellite link, and the data streams are correlated on-board before final processing on the ground. Inter-satellite metrology and satellite positioning are extensively employed to facilitate the knowledge of the instrument position vector, and its time derivative. The European space heritage usable for both the front ends and the antenna technology of such an instrument is investigated. Current and future sensors for the required inter-satellite metrology are listed. Intended performance estimates and simulation results are given.  相似文献   

15.
In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level.  相似文献   

16.
17.
18.
19.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   

20.
Global positioning system (GPS) observations can be used to estimate the geocenter motion, but are subjected to large uncertainties and effects due to uneven distribution of GPS stations and high-degree aliasing errors. In this paper, uncertainties and effects on geocenter motion estimates from global GPS observations are investigated and assessed with different truncated degrees and selected GPS network distributions based on different plate motion models, including NUVEL-1A, MORVEL56 and ITRF08. Results show that the selected GPS stations have no big effects on geocenter motion estimates based on different plate motion models, while large uncertainties are found at annual and semi-annual components when using different truncated degrees. Correlations of geocenter motion estimates from selected GPS networks with GRACE and SLR are better with truncated degree 3, and higher truncated degrees will degrade geocenter estimates. Smaller RMS also shows better results with the truncated degree 3 and the NUVEL1A has the worse results because more GPS sites are eliminated. For annual signal with truncated degree 3, four GPS strategies can reduce annual amplitudes by about 29.2% in X, 5.6% in Y, and 27.9% in Z with respect to truncated degree 1. Annual phases of all GPS solutions from MORVEL56 and ITRF08 are almost close to the GRACE solution with truncated degrees from 3 to 10, while the semi-annual signals are relatively weaker for all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号