首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

2.
This paper presents the results of a numerical evaluation of the natural lifetime reduction in low Earth orbit, due to dynamical perturbations. The study considers two values for the area-to-mass ratio, a nominal ratio which resembles a typical value of spacecraft in orbit today, and an enhanced ratio which covers the surface augmentation. The results were obtained with two orbit propagators, one of a semi-analytical nature and the second one using non-averaged equations of motion. The simulations for both propagators were set up similarly to allow comparison. They both use the solar radiation pressure and the secular terms of the geopotential (J2,J4 and J6). The atmospheric drag was turned on and off in both propagators to alternatively study the eccentricity build up and the residual lifetime. The non-averaging case also covers a validation with the full 6?×?6 geopotential. The results confirm the findings in previous publications, that is, the possibility for de-orbiting from altitudes above the residual atmosphere if a solar sail is deployed at the end-of-life, due to the combined effect of solar radiation pressure and the oblateness of the Earth. At near polar inclinations, shadowing effects can be exploited to the same end. The results obtained with the full, non-averaging propagator revealed additional de-orbiting corridors associated with solar radiation pressure which were not found by previous work on space debris mitigation. The results of both tools are compared for specific initial conditions. For nominal values of area-to-mass ratio, instead, it is confirmed that this resonance effect is negligible.The paper then puts the findings in the perspective of the current satellite catalogue. It identifies space missions which are currently close to a resonance corridor and shows the orbit evolution within the resonances with a significantly shorter residual orbital lifetime. The paper finishes with a discussion on the exploitation of these effects with regards to the long-term simulation of the space debris environment and a flux and collision probability comparison.  相似文献   

3.
We have carried out a numerical investigation of the coupled gravitational and non-gravitational perturbations acting on Earth satellite orbits in an extensive grid, covering the whole circumterrestrial space, using an appropriately modified version of the SWIFT symplectic integrator, which is suitable for long-term (120?years) integrations of the non-averaged equations of motion. Hence, we characterize the long-term dynamics and the phase-space structure of the Earth-orbiter environment, starting from low altitudes (400?km) and going up to the GEO region and beyond. This investigation was done in the framework of the EC-funded “ReDSHIFT” project, with the purpose of enabling the definition of passive debris removal strategies, based on the use of physical mechanisms inherent in the complex dynamics of the problem (i.e., resonances). Accordingly, the complicated interactions among resonances, generated by different perturbing forces (i.e., lunisolar gravity, solar radiation pressure, tesseral harmonics in the geopotential) are accurately depicted in our results, where we can identify the regions of phase space where the motion is regular and long-term stable and regions for which eccentricity growth and even instability due to chaotic behavior can emerge. The results are presented in an “atlas” of dynamical stability maps for different orbital zones, with a particular focus on the (drag-free) range of semimajor axes, where the perturbing effects of the Earth’s oblateness and lunisolar gravity are of comparable order. In some regions, the overlapping of the predominant lunisolar secular and semi-secular resonances furnish a number of interesting disposal hatches at moderate to low eccentricity orbits. All computations were repeated for an increased area-to-mass ratio, simulating the case of a satellite equipped with an on-board, area-augmenting device. We find that this would generally promote the deorbiting process, particularly at the transition region between LEO and MEO. Although direct reentry from very low eccentricities is very unlikely in most cases of interest, we find that a modest “delta-v” (ΔV) budget would be enough for satellites to be steered into a relatively short-lived resonance and achieve reentry into the Earth’s atmosphere within reasonable timescales (50?years).  相似文献   

4.
A new population of uncatalogued objects in geosynchronous Earth orbits (GEO), with a mean motion of about 1 rev/day and eccentricities up to 0.6, has been identified recently. The first observations of this new type of objects were acquired in the framework of the European Space Agency’s (ESA) search for space debris in GEO and the geostationary transfer orbit (GTO) using the ESA 1-m telescope on Tenerife. Earlier studies have postulated that the perturbations due to the solar radiation pressure can lead to such large eccentricities for GEO objects with a high area-to-mass ratio (A/M). The simulations showed that the eccentricities of GEO objects with large A/M exhibit periodic variations with periods of about one year and amplitudes depending on the value of A/M. The findings of these studies could be confirmed by observations from the ESA 1-m telescope on Tenerife.  相似文献   

5.
6.
    
The classical Laplace plane is a frozen orbit, or equilibrium solution for the averaged dynamics arising from Earth oblateness and lunisolar gravitational perturbations. The pole of the orbital plane of uncontrolled GEO satellites regress around the pole of the Laplace plane at nearly constant inclination and rate. In accordance with Friesen et al. (1993), we show how this stable plane can be used as a robust long-term disposal orbit. The current graveyard regions for end-of-life retirement of GEO payloads, which is several hundred kilometers above GEO depending on the spacecraft characteristics, cannot contain the newly discovered high area-to-mass ratio debris population. Such objects are highly susceptible to the effects of solar radiation pressure exhibiting dramatic variations in eccentricity and inclination over short periods of time. The Laplace plane graveyard, on the contrary, would trap this debris and would not allow these objects to rain down through GEO. Since placing a satellite in this inclined orbit can be expensive, we discuss some alternative disposal schemes that have acceptable cost-to-benefit ratios.  相似文献   

7.
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth’s gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth’s shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.  相似文献   

8.
For special demands, some notable orbit types have been developed by human, including the Molniya orbits, which have a relatively high eccentricity up to about 0.7, and a period of 12 h. Considering that space debris with high area-to-mass ratio (A/M) has been discovered, such objects may also exist in Molniya orbits due to spacecraft and upper stages fragmentation events. However, there are not sufficient studies of the complex dynamical phenomena of such orbits. These studies can enrich the knowledge about the long-term evolution of these orbits, be helpful to propose uncatalogued objects observation and identification, and also set the protected region as well as active debris removal. In this paper, the characteristics of 2:1 resonance of Molniya satellite orbits are studied. A large set of numerical simulations, including all the relevant perturbations, is carried out to further investigate the main characteristics, and special attention is payed to the dynamical evolution of objects with high A/M, particularly affected by the direct solar radiation pressure. The long-term dynamical evolution of orbital elements, as well as the dependency of lifetime on the A/M value, is discussed.  相似文献   

9.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   

10.
分析了较高轨道(a > 10000km)大面质比空间碎片的轨道动力学演化问题. 重点讨论了位于地球同步轨道的空间碎片轨道演化问题, 并给出轨道偏心率 随时间演化的表达式. 通过进一步分析得出, 倾角大于63°26'的GTO轨 道空间碎片, 仅在J2和第三体摄动影响下, 会出现轨道偏心率升高; 而对 于大面质比空间碎片, 在J2项和太阳光压同时作用下, 当近地点指向的角 变率与太阳平黄经变化率接近时, 会出现长期共振现象, 导致轨道偏心率升 高, 近地点降低. 分析还得出, 轨道演化过程中, 偏心率的最大值与初始轨 道近地点的指向有关.  相似文献   

11.
    
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   

12.
13.
A nonlinear mixture model for the interpretation of mixed pixels in remote sensing satellite images is proposed. The proposed model is a Monte Carlo ray-tracing model that takes into account interactions among the ground cover materials (multiple reflections among the materials on the surface). The proposed model also takes into account topographic features (slope) of the ground surface. As an example, Top of the Atmosphere (TOA) radiance of mixed pixels of forested areas which are composed of grasses and trees are simulated with the proposed model and compared to actual remote sensing satellite data of ASTER/VNIR over these forested areas. It was found that the influence due to multiple scattering interactions between trees depends on the tree distance and ranges from 8% to 10%. It is also found that the proposed model is useful to interpret mixed pixels. Namely, it is suggested that actual reflectance of the trees is higher than apparent reflectance that is calculated with the satellite data. Also it is suggested that it is possible to estimate forest parameters such as tree distance, tree shape.  相似文献   

14.
In this paper we provide an extensive analysis of the global dynamics of high-area-to-mass ratios geosynchronous (GEO) space debris, applying a recent technique developed by Cincotta and Simó [Cincotta, P.M., Simó, C.Simple tools to study global dynamics in non-axisymmetric galactic potentials–I. Astron. Astrophys. (147), 205–228, 2000.], Mean Exponential Growth factor of Nearby Orbits (MEGNO), which provides an efficient tool to investigate both regular and chaotic components of the phase space.  相似文献   

15.
Based on the Monte Carlo ray-tracing method, the network coefficients of thermal network model describing the radiation heat transfer among satellite surfaces is solved by considering the surface material optical characters. It is superiority to the conventional Gebhart’s method in view of the grey body and the diffuse reflection assumptions. The zone leveling method is used to discrete the governing equations and the solar absorpivity is separated and considered to be an important correction parameter. Effects of the solar incidence round angle, the zenith angle and the ratio of absorpivity to emissivity (RAE) on temperature distribution are numerically simulated and discussed in detail. The higher or the lower the RAE may be lead to the alternative heating and cooling tend with a larger heating or cooling velocity of main body surfaces than the solar array surfaces. Furthermore, maximum temperature of main body is almost larger than solar arrays. Under the same RAE, solar incidence angle make a great effect on the uniform character of temperature distribution.  相似文献   

16.
基于置信分布的系统可靠度评估蒙特卡罗方法   总被引:5,自引:1,他引:5       下载免费PDF全文
大型系统、复杂系统的可靠度的求解问题是可靠性工程中一个热点和难点的问题,针对这个问题,提出了一种基于蒙特卡罗模拟仿真的系统可靠度求解方法.通过利用系统的各个单元产品的可靠度置信分布和系统可靠度函数进行蒙特卡罗仿真,评估出系统可靠度.本方法克服了以往的蒙特卡罗仿真方法处理离散分布时抽取时间样本的困难,并且对系统的结构和复杂程度没有要求.最后,给出计算实例对比说明了该方法的正确性和可用性.   相似文献   

17.
惯性质量是力传感器模型的重要校准参数,也是影响动态力测量精度的关键因素之一。为了消除参数误差对惯性质量校准模型引起的病态,提出一种改进Monte Carlo校准(MMCC)方法。首先,建立力传感器惯性质量、配重质量与测量响应之间的模型;其次,利用伪随机数生成技术,分别对该模型中的配重质量、加速度和电压进行样本空间的全域模拟;然后,根据区间判断准则筛选出满足预设精度的有效样本;最后,结合有效样本的概率,估计出力传感器的惯性质量,并实现动态校准。为了验证本文方法的准确性,利用正弦激振台对Kistler 9331B型力传感器进行动态校准。实验结果表明,惯性质量的估计值为83.91 g,估计误差为0.67%,标准差为0.74 g;动态力的校准误差范围为[-7.88%,11.46%]。校准误差明显低于传统的二次及多次配重法。  相似文献   

18.
本文研究了一种基于时间梳原理的高频正弦信号相位差测量方法,给出了时间梳原理的数学模型,并详细分析了其特点,并将此原理首次应用于高频信号的数据采集中,可以用低频和被测信号构建一种高频等效采样技术,可以在不满足乃奎斯特采样定理下,对被测两路正弦信号进行同步采样,避免了高频信号采样的高采样率,结合多重互相关技术,实现了对高频正弦信号的相位差的高精度测量,实验结果表明本文算法对高频信号对高频正弦信号的相位差测量具有很高的测量精度,尤其在低信噪比下也有较高的测量精度,具有较高的工程实用价值。  相似文献   

19.
Von Karman模型三维大气紊流仿真理论与方法   总被引:1,自引:0,他引:1       下载免费PDF全文
基于三维紊流场相关函数矩阵,用蒙特卡罗法仿真生成Von Karman模型三维空间大气紊流场,实现了对复杂的Von Karman模型的精确推导和应用,仿真流场的相关特性在理论上可以任意逼近Von Karman理论模型.通过提高白噪声序列的白化程度及优化蒙特卡罗算法的方法提高了仿真精度和效率.数值仿真结果证明:所生成的空间大气紊流场符合模型特性,具有较好的统计特性和仿真精度,满足实时飞行仿真对紊流场数据的要求.  相似文献   

20.
In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号