首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   

2.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

3.
Compared with other remote observations, brightness temperatures (TB) derived from microwave emission measurements provide a unique means to characterize the physical properties of the lunar surface. Using Chang’E-2 microwave radiometer data, we produced 12 global TB images of the lunar surface during a diurnal cycle with different local times separated by approximately 2?h. There are two types of remarkable TB units on the lunar surface, the “hot regions” occurring during the lunar day in the lunar Maria regions and the “microwave cold spots” occurring during the nighttime typically related to young craters. Compared with their surroundings, the hot regions are much warmer during the lunar day and slightly colder at night, while the microwave cold spots are much colder during the lunar night and slightly warmer in the daytime. Moreover, the TB heating and cooling rates of these two units are larger than others at the same average latitude where they are located during the lunar day, especially after sunrise and before sunset. The hot regions have a good agreement with the mare regions with high TiO2 abundance. Besides, brightness temperatures in the lunar Maria correlate closely with their TiO2 abundance. For most microwave cold spots, they agree with the young craters, and their brightness temperature distributions have a significant negative correlation with the lunar surface nighttime temperature and rock abundance.  相似文献   

4.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

5.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

6.
Neutral exospheric and lower thermospheric (100–130 km) temperatures from Thomson scatter measurements at Millstone Hill (42°N) are compared with CIRA temperatures with a view towards identifying deficiencies in the CIRA and recommending revisions. CIRA models the observed diurnal mean temperatures (T0) to within 10% over a wide range of solar conditions (75? F10.7 ? 250), but consistently underestimates the diurnal temperatures with maximum deviations approaching 50% of observed amplitudes (180–240 K) at solar maximum (1200 K ? T0 ? 1400 K). The observed semidiurnal amplitudes, which lie in the range of 20K–80K, are always underestimated and frequently by more than 50%. In the lower thermosphere, tidal oscillations of temperature of order 20K–40K occur which are not modelled by CIRA. In addition, an analysis of exospheric temperatures at Millstone Hill during a magnetic disturbance indicates a response within 1–2 hours from storm onset, whereas CIRA assumes a 6.7 hour delay. Although some of these deficiences are addressed by the more recent MSIS model, there exists a sufficient data base to recommend several additional revisions to the CIRA temperatures at this time.  相似文献   

7.
On the basis of systematic electron temperature measurements onboard the Interkosmos-19 satellite, an experimental global model of electron temperature Te has been constructed; namely, a set of samples representing 10 intervals of measured Te, accompanied by values of the geographic longitude, solar zenith angle, season of the year, Covington index, Dst and Kp, grouped according to the invariant latitude, geomagnetic time and altitude. On the basis of the experimental model, the coefficients of the empirical models for the summer and winter seasons, for geophysically quiet conditions, and for heights of 520, 600, 920 and 1000 km are calculated. For heights of 680, 760 and 840 km with fewer data available, the coefficients are provisional.  相似文献   

8.
9.
Langmuir probe measurements made at solar maximum from the Dynamics Explorer-2 satellite in 1981 and 1982 are employed to examine the latitudinal variation of electron temperature, Te, at altitudes between 300 and 400 km and its response to 27 day variations of solar EUV. Comparison of these data with Te models based on the solar minimum measurements from Atmosphere Explorer-C suggest that the daytime Te does not change very much during the solar cycle, except at low latitudes where an especially large 27 day variation occurs. The 27 day component decreases from about 7°/F10.7 unit at the equator to 3°/F10.7 unit at 851V 3 middle and higher latitudes. From these DE-2 measurements, and those from AE-C, we conclude that the daytime Te near the F2 peak is more responsive to short-term (daily) variations in F10.7 than to any longer term changes that may occur between solar minimum and solar maximum. To investigate this sensitivity of the dayside ionosphere to solar activity we employ the inverse relationship of Te and Ne, that was found at solar minimum, to see if it can be used to order the Te behaviour at solar maximum. We introduce a simple quadratic correction for the F10.7 influence on Te based on the entire daytime AE-C and DE-2 data base between 300 and 400 km. Although this equation may be found useful, the systematic deviations of the DE-2 data suggest that the solar minimum model does not accurately describe the Te-Ne relationships at solar maximum, at least above 300 km where the DE-2 measurements were made. Future work with this data base should attempt to see if such a relationship exists.  相似文献   

10.
Small changes in the vorticity of winter storms, responding to solar wind variations, are found in winters from 1957 to 2011, and are greater for winters with higher levels of stratospheric volcanic aerosols. Using 1993–2011 data, the response of the vorticity area index (VAI) is shown to be of larger amplitude when the days of minima in the relativistic electron flux (REF) precipitating from the radiation belts are used, instead of heliospheric current sheet (HCS) crossings, as key days in superposed epoch analyses. The HCS crossings mostly occur within a few days of the REF minima. The VAI is an objective measure of the area of high cyclonic vorticity, and for the present work is derived from ERA-40 and ERA-Interim reanalyses of global meteorological data. The VAI dependencies on the stratospheric aerosol content (SAC) and the REF are consistent with a model in which the ionosphere-earth current density (Jz) affects cloud microphysics. One of the ways in which Jz is modulated is by changes in stratospheric column resistance (S), which is increased by stratospheric aerosols. Because S is in series with the tropospheric column resistance (T), Jz modulation by REF requires that S be not negligible with respect to T. So the Jz modulation and the VAI response appear when the SAC is very high, or the REF reductions (which also increase S) are very deep, and when the product of the SAC and the reciprocal of the REF exceeds a threshold value dependent on T.  相似文献   

11.
Hourly systematic measurements of the highest frequency reflected by the sporadic-E layer (foEs) recorded at the Rome ionospheric observatory (Italy, 41.8° N, 12.5° E), were considered during the period January 1976–December 2007, to calculate the percentage of occurrence of sporadic-E layer with frequencies foEs greater than a given threshold value fT, P(foEs > fT).  相似文献   

12.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

13.
Rain drop size distribution (DSD) was measured at four places in Southern India {Thiruvananthapuram, Kochi, Munnar and Sriharikota (SHAR)} using a Joss–Waldvogel (JW) impact type disdrometer. The data for each minute were corrected for dead time errors and rain rate was computed from the corrected data. The data for a whole month were then sorted according to rain rate (R) into several classes ranging from 0.1 to >100 mm/h. The average DSD in each class was computed, and the lognormal distribution function was fitted to the average. In all the cases, the function fitted the data very well. The fit parameters were found to have dependence on rain rate. The total number of drops (NT), the geometric mean diameter (Dg) and the standard geometric deviation (σ) were also computed from the fit parameters. The standard geometric deviation (σ) was found to be more or less constant with rain rate at all the sites and in all months. The other two parameters (NT and Dg) were found to vary exponentially with rain rate except in Munnar, a high altitude station. At Thiruvananthapuram, in most of the months, NT increased exponentially with rain rate up to some value of R, which was different in different months, and then remained more or less constant or decrease slightly. In all cases, the variation of NT and Dg was such that NTDg3 increased linearly with rain rate.  相似文献   

14.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

15.
The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M?>?5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the ‘EQ time modification in density gradient’ defined by δ?=?(foF2 max???foF2 min)∕τmm, where τmm – time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices.  相似文献   

16.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

17.
The present study emphasize the development of a region specific rain retrieval algorithm by taking into accounts the cloud features. Brightness temperatures (Tbs) from various TRMM Microwave Imager (TMI) channels are calibrated with near surface rain intensity as observed from the TRMM – Precipitation Radar. It shows that TbR relations during exclusive-Mesoscale Convective System (MCS) events have greater dynamical range compared to combined events of non-MCS and MCS. Increased dynamical range of TbR relations for exclusive-MCS events have led to the development of an Artificial Neural Network (ANN) based regional algorithm for rain intensity estimation. By using the exclusive MCSs algorithm, reasonably good improvement in the accuracy of rain intensity estimation is observed. A case study of a comparison of rain intensity estimation by the exclusive-MCS regional algorithm and the global TRMM 2A12 rain product with a Doppler Weather Radar shows significant improvement in rain intensity estimation by the developed regional algorithm.  相似文献   

18.
The presence and movement of plasma density fluctuations in the F-region of the ionosphere are studied by monitoring phase and amplitude of radio waves propagating through the region. In this paper, we have used weak scattering theory and assumed the plasma density fluctuations to behave like phase changing diffraction screen. Appropriate relations for scintillation index S4, and phase variance δ? are derived and computed for different parameters of the plasma density irregularities of the ionosphere. SROSS-C2 satellite in situ measurements of plasma density fluctuations, which provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves, were used first time to develop a scintillation model for low latitude. It is observed that the scintillation index S4 and phase variance δ? depends on the strength of the plasma turbulence. Finally, the results obtained from modeling are compared and discussed with the available recent results.  相似文献   

19.
This paper presents the global spatial (latitude and altitude) structure and temporal variability of the ∼23-day ionospheric zonally symmetric (s = 0) planetary wave (PW) seen in the Northern winter of 2008/2009 (October 2008–March 2009). It is shown that these ∼23-day ionospheric oscillations are forced from PWs propagating from below. The COSMIC ionospheric parameters foF2 and hmF2 and electron density at fixed altitudes and the SABER temperatures were utilized in order to define the waves which are present simultaneously in the atmosphere and ionosphere. The long-period PWs from the two data sets have been extracted through the same data analysis method. The similarity between the lower thermospheric ∼23-day (s = 0) temperature PW and its ionospheric electron density response provides valuable and strong experimental evidence for confirming the paradigm of atmosphere–ionosphere coupling.  相似文献   

20.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号