共查询到20条相似文献,搜索用时 15 毫秒
1.
P.K. Bhuyan K. Bhuyan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Electron density measured by the Indian satellite SROSS C2 at the altitude of ∼500 km in the 75°E longitude sector for the ascending half of the solar cycle 22 from 1995 to 1999 are used to study the position and density of the equatorial ionization anomaly (EIA). Results show that the latitudinal position and peak electron density of the EIA crest and crest to trough ratios of the anomaly during the 10:00–14:00 LT period vary with season and from one year to another. Both EIA crest position and density are found to be asymmetric about the magnetic equator and the asymmetry depends on season as well as the year of observation, i.e., solar activity. The latitudinal position of the crest of the EIA and the crest density bears good positive correlation with F10.7 and the strength of the equatorial electrojet (EEJ). 相似文献
2.
3.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(7):1701-1713
Equatorial plasma bubbles (EPBs) are common features of the equatorial and low-latitude ionosphere and are known to cause radio wave scintillation which leads to the degradation of communication and navigation systems. Although these structures have been studied for decades, a full understanding of their evolution and dynamics remains important for space weather mitigation purposes. In this study, we present cases of EPBs occurrences around April and July 2012 geomagnetic storm periods over the African equatorial sector. The EPBs were observed from the Communications/Navigation Outage Forecasting System (C/NOFS) and generally correlated well to the ionospheric irregularities observed from the Global Positioning System total electron content (GPS-TEC) measurements (rate of TEC change, ROT). This study revealed that the evolution of the EPBs during moderate storms is controlled by the strength of the daytime equatorial electrojet (EEJ) currents regardless of the strength of the equatorial ionization anomaly (EIA), the latter is observed during the July storm case in particular. These effects were more evident during the main and part of the early recovery phases of the geomagnetic storm days considered. However, the evening hours TEC gradients between regions of the magnetic equator and ionization crests also played roles in the existence of ionospheric irregularities. 相似文献
4.
Kangkang Liu Guozhu Li Baiqi Ning 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(11):3612-3620
The small-scale wave-like structure (SSWS) of F region bottomside plasma density was proposed to be an important seeding for equatorial plasma bubble (EPB) generation, and employed in theoretical simulations of EPBs in recent years. The seeding role of SSWS, however, is waiting to be demonstrated by observation. Here we present two cases of SSWS and EPB observed by the Fuke all-sky airglow imager (19.3°N, 109.1°E; dip latitude 14.3°N). For each case, the results show that two large-scale wave-like structures (LSWSs) initially appeared around sunset in the longitude regions separated by 3–4°, but EPB irregularities were only generated in one of the LSWSs where SSWSs were seen riding on LSWS. For the other LSWS, no SSWS and EPB irregularities were seen. Considering that the two LSWSs were situated closely in longitude where the amplitude of pre-reversal enhancement of background eastward electric field should be similar, the observation that EPB was only generated in the longitude with simultaneous LSWS and SSWS could provide supporting evidence for SSWS seeding of EPB. 相似文献
5.
Pencho Marinov Shunrong Zhang Ivan Kutiev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders. 相似文献
6.
Tiju Joseph Mathew S.R. Prabhakaran Nayar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The characteristics of the equatorial F-region zonal plasma drift during post-sunset period have been investigated using the multi-frequency HF Doppler radar. The pattern of the zonal plasma drift is such that it starts with a westward drift during the pre-sunset hours, followed by an eastward drift shortly after the E-region sunset. The zonal plasma drift is characterized by the presence of a positive vertical shear around the post-sunset period and maximum shear is observed at the time of the peak of the pre-reversal enhancement in the vertical drift. The presence of vertical shear in the zonal drift is associated with the post-sunset velocity vortex existing at the equatorial F-region. 相似文献
7.
Tiju Joseph Mathew S.R. Prabhakaran Nayar Sudha Ravindran Tarun Pant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves. 相似文献
8.
A.J. Carrasco I.S. Batista M.A. Abdu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures. 相似文献
9.
S.M. Park H. Kim S. Min J. Park J.H. Lee H. Kil L.J. Paxton S.-Y. Su J. Lee K.W. Min 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity. 相似文献
10.
P.K. Bhuyan A. BorgohainK. Bhuyan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):587-598
The electron density and temperature distribution of the equatorial and low latitude ionosphere in the Indian sector has been investigated by simultaneously solving the continuity, momentum and energy balance equations of ion and electron flux along geomagnetic field lines from the Northern to the Southern hemisphere. Model algorithm is presented and results are compared with the electron density and electron temperature measured in situ by Indian SROSS C2 satellite at an altitude of ∼500 km within 31°S–34°N and 75 ± 10°E that covers the Indian sector during a period of low solar activity. Equatorial Ionization Anomaly (EIA) observed in electron density, morning and afternoon enhancements, equatorial trough in electron temperature have been simulated by the model within reasonable limits of accuracy besides reproducing other normal diurnal features of density and temperature. 相似文献
11.
P. Coïsson B. NavaS.M. Radicella 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The latest version of IRI includes various options for the computation of the topside electron density profile. One of the possible choices is based on NeQuick model. Its inclusion in IRI has been made transferring all the formulations used in NeQuick model. In details, an Epstein layer function is used to describe the electron density profile and the topside shape is controlled by an empirical parameter, connected to the NeQuick F2 bottomside thickness parameter, B2bot. It is computed also in this IRI topside option in order to maintain self-consistency with its original formulation. This paper analyses the possibility of using the IRI bottomside parameters for this option and its impact on the profile and TEC. The case of experimental peak values given as input is also analysed. 相似文献
12.
Ewa Slominska Hanna Rothkaehl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity. 相似文献
13.
Y.O. Migoya-Orue S.M. RadicellaB. Nava 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Electron density obtained by IRI (topside options NeQuick and IRI-Corr) and NeQuick models in their standard versions have been compared with plasma density values measured by F13 and F15 DMSP satellites for years of different solar activities. A statistical study of the differences between modeled and experimental data has been carried out to investigate each model performance. 相似文献
14.
K.G. Ratovsky B.G. ShpynevA.V. Oinats A.V. Medvedev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The topside ionosphere parameters are studied based on the long-duration Irkutsk incoherent scatter radar (52.9N, 103.3E) measurements conducted in September 2005, June and December 2007. As a topside ionosphere parameter we chose the vertical scale height (VSH) related to the gradient of the electron density logarithm above the peak height. For morphological studies we used median electron density profiles. Besides the median behavior we also studied VSH disturbances (deviations from median values) during the magnetic storm of September 11th 2005. We compared the Irkutsk incoherent scatter radar data with the Millstone Hill and Arecibo incoherent scatter radar observations, the IRI-2007 prediction (using the two topside options) and VSH derived from the Irkutsk DPS-4 Digisonde bottomside measurements. 相似文献
15.
16.
O.E. Abe A.B. Rabiu J.O. Adeniyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity. 相似文献
17.
A.O. Olawepo J.O. Adeniyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers. 相似文献
18.
19.
A.O. Akala E.O. Oyeyemi E.O. Somoye A.B. Adeloye A.O. Adewale 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time. 相似文献
20.
Shenggao Yang Libin Weng Yaguang Zhu Xu Yang Sihui Hu Peikang Xu Huan Zhang Weidong Pan Jie Shang Xing Su 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):46-55
We used the TEC (Total electron content) data of 5 min resolution obtained from the Madrigal database during solar-maximum winter (Nov. 6, 2000–Feb. 4, 2001) to study statistically the polar ionospheric plasma distribution response to different intensity and orientation of IMF By/Bz components. The sunlit high-density plasma extension from dayside to nightside is favored in negative IMF By and Bz conditions. With the magnitude of the negative Bz increasing, the time range corresponding to the distinct high-density extension feature expands, and the plasma density along the extension path enhances, which can be attributed to the interaction between dayside solar-produced ionization whose poleward limit is decided by terminator and convection extent mainly modulated by IMF Bz component. As for IMF By component influence on the sunlit plasma extension, the combination effect of convection and corotation electric fields is necessary to be considered. 相似文献