共查询到20条相似文献,搜索用时 0 毫秒
1.
Kristine M. Larson Johan S. Löfgren Rüdiger Haas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This paper presents a method to derive local sea level variations using data from a single geodetic-quality Global Navigation Satellite System (GNSS) receiver using GPS (Global Positioning System) signals. This method is based on multipath theory for specular reflections and the use of Signal-to-Noise Ratio (SNR) data. The technique could be valuable for altimeter calibration and validation. Data from two test sites, a dedicated GPS tide gauge at the Onsala Space Observatory (OSO) in Sweden and the Friday Harbor GPS site of the EarthScope Plate Boundary Observatory (PBO) in USA, are analyzed. The sea level results are compared to independently observed sea level data from nearby and in situ tide gauges. For OSO, the Root-Mean-Square (RMS) agreement is better than 5 cm, while it is in the order of 10 cm for Friday Harbor. The correlation coefficients are better than 0.97 for both sites. For OSO, the SNR-based results are also compared with results from a geodetic analysis of GPS data of a two receivers/antennae tide gauge installation. The SNR-based analysis results in a slightly worse RMS agreement with respect to the independent tide gauge data than the geodetic analysis (4.8 cm and 4.0 cm, respectively). However, it provides results even for rough sea surface conditions when the two receivers/antennae installation no longer records the necessary data for a geodetic analysis. 相似文献
2.
Johan S. Löfgren Rüdiger Haas Jan M. Johansson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A continuous monitoring of coastal sea level changes is important for human society since it is predicted that up to 332 million people in coastal and low-lying areas will be directly affected by flooding from sea level rise by the end of the 21st century. The traditional way to observe sea level is using tide gauges that give measurements relative to the Earth’s crust. However, in order to improve the understanding of the sea level change processes it is necessary to separate the measurements into land surface height changes and sea surface height changes. These measurements should then be relative to a global reference frame. This can be done with satellite techniques, and thus a GNSS-based tide gauge is proposed. The GNSS-based tide gauge makes use of both GNSS signals that are directly received and GNSS signals that are reflected from the sea surface. An experimental installation at the Onsala Space Observatory (OSO) shows that the reflected GNSS signals have only about 3 dB less signal-to-noise-ratio than the directly received GNSS signals. Furthermore, a comparison of local sea level observations from the GNSS-based tide gauge with two stilling well gauges, located approximately 18 and 33 km away from OSO, gives a pairwise root-mean-square agreement on the order of 4 cm. This indicates that the GNSS-based tide gauge gives valuable results for sea level monitoring. 相似文献
3.
Bruce J. Haines Shailen D. Desai George H. Born 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We describe results from two decades of monitoring vertical seafloor motion at the Harvest oil platform, NASA’s prime verification site for the TOPEX/Poseidon and Jason series of reference altimeter missions. Using continuous GPS observations, we refine estimates of the platform subsidence—due most likely to fluid withdrawal linked to oil production—and describe the impact on estimates of stability for the altimeter measurement systems. The cumulative seafloor subsidence over 20 yrs is approximately 10 cm, but the rate does not appear constant. The apparent non-linear nature of the vertical motion, coupled with long-period GPS errors, implies that the quality of the seafloor motion estimates is not uniform over the 20-yr period. For the Jason-1 era (2002–2009), competing estimates for the subsidence show agreement to better than 1 mm yr−1. Longer durations of data are needed before the seafloor motion estimates for the Jason-2 era (2008–present) can approach this level of accuracy. 相似文献
4.
Guiping Feng S. Jin T. Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Sea level changes are threatening the human living environments, particularly along the European Coasts with highly dense population. In this paper, coastal sea level changes in western and southern Europe are investigated for the period 1993–2011 using Global Positioning System (GPS), Tide Gauge (TG), Satellite Altimetry (SA), Gravity Recovery and Climate Experiment (GRACE) and geophysical models. The mean secular trend is 2.26 ± 0.52 mm/y from satellite altimetry, 2.43 ± 0.61 mm/y from TG+GPS and 1.99 ± 0.67 mm/y from GRACE mass plus steric components, which have a remarkably good agreement. For the seasonal variations, annual amplitudes of satellite altimetry and TG+GPS results are almost similar, while GRACE Mass+Steric results are a little smaller. The annual phases agree remarkably well for three independent techniques. The annual cycle is mainly driven by the steric contributions, while the annual phases of non-steric (mass component) sea level changes are almost a half year later than the steric sea level changes. 相似文献
5.
6.
Ami Hassan Md Din Nur Adilla Zulkifli Mohammad Hanif Hamden Wan Anom Wan Aris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(11):3452-3472
Rise in sea levels is one of the disastrous effects of climate change. A relatively small increase in sea level could affect natural coastal systems. In a study of long-term changes in sea level and measurements of postglacial rebound, monitoring vertical land motion (VLM) is of crucial interest. This study presents an approach to estimate precise sea level trends based on a combination of multi-sensor techniques in the Malaysian region over 19?years. In this study, satellite altimeters (SALT) were used to derive absolute sea levels (ASLs). Tide gauge (TG) stations along the coast of Malaysia were utilised to derive the rate of relative sea levels using sea level changes and VLMs. To obtain ASL at TGs, VLM at these stations were computed using Global Positioning System (GPS), Persistent Scatterer Interferometric Synthetic Aperture Radar (PS InSAR), and SALT minus TG. The computed VLMs mostly show similarities in signs rather than magnitude. The findings from the multi-sensor techniques showed that regional sea level trends ranged from 2.65?±?0.86?mm/yr to 6.03?±?0.79?mm/yr for chosen sub-areas, with an overall mean of 4.47?±?0.71?mm/yr and overall subsidence. This information is expected to be valuable for a wide variety of climatic applications and for studying environmental issues related to flooding and global warming in Malaysia. 相似文献
7.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(5):1402-1413
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions. 相似文献
8.
白昼红外星图具有高背景噪声、低信噪比、弱目标的特征, 采用传统单帧提取方法很难准确提取星点. 且由于星点为弱小目标, 对噪声极为敏感, 星点成像多为随机不规则图形, 采用单帧提取星点质心鲁棒性较差. 传统多帧叠加法虽能克服单帧提取星点质心鲁棒性较差的问题, 但对于高背景噪声红外星图, 叠加星图并不能明显提高信噪比, 星点提取成功率依然较低. 为此, 提出利用背景预测方法确定疑似星点位置, 并对边界进行膨胀, 然后利用膨胀后的边界进行单帧星图能量提取, 并将提取星图进行叠加形成高信噪比星图, 最后进行星点质心提取. 实验表明, 该方法星点提取正确率为99.5%, 较自适应阈值分割法和多帧叠加法分别提升84.2%和37.9%, 较背景预测法正确率提升14.5%. 同时该方法较自适应阈值分割法和背景预测法、多帧叠加法精度分别提升12.8%, 41.4%, 33.3%, 具有明显优势. 相似文献
9.
The challenges in long-term altimetry calibration for addressing the problem of global sea level change 总被引:1,自引:0,他引:1
Lee-Lueng Fu Bruce J. Haines 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Long-term change of the global sea level resulting from climate change has become an issue of great societal interest. The advent of the technology of satellite altimetry has modernized the study of sea level on both global and regional scales. In combination with in situ observations of the ocean density and space observations of Earth’s gravity variations, satellite altimetry has become an essential component of a global observing system for monitoring and understanding sea level change. The challenge of making sea level measurements with sufficient accuracy to discern long-term trends and allow the patterns of natural variability to be distinguished from those linked to anthropogenic forcing rests largely on the long-term efforts of altimeter calibration and validation. The issues of long-term calibration for the various components of the altimeter measurement system are reviewed in the paper. The topics include radar altimetry, the effects of tropospheric water vapor, orbit determination, gravity field, tide gauges, and the terrestrial reference frame. The necessity for maintaining a complete calibration effort and the challenges of sustaining it into the future are discussed. 相似文献
10.
Florence Birol Fabien Léger Marcello Passaro Anny Cazenave Fernando Niño Francisco M. Calafat Andrew Shaw Jean-François Legeais Yvan Gouzenes Christian Schwatke Jérôme Benveniste 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(8):2398-2415
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community. 相似文献
11.
Paulo Marreiros M. Joana Fernandes Luisa Bastos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Aiming to validate coastal altimetry data, an exploratory experiment was carried out, using a survey ship with onboard GPS and motion compensation systems. The ship navigation plan followed a track as coincident as possible with the passage of two altimetry satellites, Envisat and Jason-1, along the Portuguese coast, in June 2007. 相似文献
12.
Chi-Ming Lee Chung-Yen Kuo Jian Sun Tzu-Pang Tseng Kwo-Hwa Chen Wen-Hau Lan C.K. Shum Tarig Ali Kuo-En Ching Philip Chu Yuanyuan Jia 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(3):1280-1288
Global sea level rise due to an increasingly warmer climate has begun to induce hazards, adversely affecting the lives and properties of people residing in low-lying coastal regions and islands. Therefore, it is important to monitor and understand variations in coastal sea level covering offshore regions. Signal-to-noise ratio (SNR) data of Global Navigation Satellite System (GNSS) have been successfully used to robustly derive sea level heights (SLHs). In Taiwan, there are a number of continuously operating GNSS stations, not originally installed for sea level monitoring. They were established in harbors or near coastal regions for monitoring land motion. This study utilizes existing SNR data from three GNSS stations (Kaohsiung, Suao, and TaiCOAST) in Taiwan to compute SLHs with two methods, namely, Lomb–Scargle Periodogram (LSP)-only, and LSP aided with tidal harmonic analysis developed in this study. The results of both methods are compared with co-located or nearby tide gauge records. Due to the poor quality of SNR data, the worst accuracy of SLHs derived from traditional LSP-only method exceeds 1?m at the TaiCOAST station. With our procedure, the standard deviations (STDs) of difference between GNSS-derived SLHs and tide gauge records in Kaohsiung and Suao stations decreased to 10?cm and the results show excellent agreement with tide gauge derived relative sea level records, with STD of differences of 7?cm and correlation coefficient of 0.96. In addition, the absolute GNSS-R sea level trend in Kaohsiung during 2006–2011 agrees well with that derived from satellite altimetry. We conclude that the coastal GNSS stations in Taiwan have the potential of monitoring absolute coastal sea level change accurately when our proposed methodology is used. 相似文献
13.
Qi Liu Shuangcheng Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):975-984
This paper presents an improved new method with differential evolution and the cubic spline approach is proposed to retrieve sea level height based on GNSS SNR observations from a single geodetic receiver. Considering the B-spline function is unstable at the beginning or end, and the feature that B-spline functions do not pass through nodes may introduce errors. Thus, the cubic spline is applied to the retrieval process and accounts for a continuous and smooth in sea level retrieval time series. Besides, the biases caused by tropospheric delay and dynamic sea level are considered and corrected. Testing data from two stations with different tidal range and the final solution agrees well with measurements from co-located tide gauges, reaching the RMSE of 3.67 cm at Friday Harbor, Washington, and 1.36 cm at Onsala, Sweden. Comparison of the nonlinear least squares, this method leads to a clear increase in precision of the sea level retrievals within 50%. Additionally, referring to the result of Purnell et al. (2020) and the IAG inter-comparison campaign, the results of this paper show more potential. 相似文献
14.
Ole Baltazar Andersen Yongcun Cheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Accurate sea level trend determination is fundamentally related to calibration of both the instrument as well as to investigate if there are linear trends in the set of standard geophysical and range corrections applied to the sea level observations. Long term changes in range corrections can leak into the observed sea level record and be interpreted as part of the sea level trend. Particularly if these exhibit anomalous trend close to the satellite calibration sites. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(7):2990-2995
Antarctica is a continent that crucial for studying climate change and its progression across time, as well as analyzing and forecasting local and global change. In this environment, due to the challenges caused by sea-level rise, storm surges, and tsunamis, sustainability is a critical concern, particularly for coastal regions. As a result, the long-term observations that will be conducted in Antarctica are critical for monitoring the adverse impacts of climate change. In recent years, many monitoring approaches, both space, and ground-based are performed to monitor sea/ice level trends in space-based scientific investigations conducted in and around the region. In the study, based on one year of observations from the Palmer GNSS Station, the GNSS Reflectometry technique was used to measure the sea level on the Antarctic Peninsula (PALM). GNSS Station observations were analyzed with a Lomb-Scargle periodogram to monitor sea-level changes, and results were validated with data from a co-located tide gauge (TG). The results show that the correlation between GNSS-R sea-level changes and tidal sea-level changes is found as 0.91. 相似文献
16.
R.D. Ray B.D. Beckley F.G. Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry. To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm yr−1 and a weighted root-mean-square difference of 2.7 mm yr−1. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(1) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive. One of our stations, Malè, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. 相似文献
17.
Man-Lian Zhang Weixing WanLibo Liu Baiqi Ning 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
In this paper, latitudinal profiles of the vertical total electron content (TEC) deduced from the dual-frequency GPS measurements obtained at ground stations around 120°E longitude were used to study the variability of the equatorial ionization anomaly (EIA). The present study mainly focuses on the analysis of the crest-to-trough TEC ratio (TEC-CTR) which is an important parameter representing the strength of EIA. Data used for the present study covered the time period from 01 January, 1998 to 31 December, 2004. An empirical orthogonal function analysis method is used to obtain the main features of the TEC-CTR’s diurnal and seasonal variations as well as its solar activity level dependency. Our results showed that: (1) The diurnal variation pattern of the TEC-CTR at 120°E longitude is characterized by two remarkable peaks, one occurring in the post-noon hours around 13–14 LT, and the other occurring in the post-sunset hours around 20–21 LT, and the post-sunset peak has a much higher value than the post-noon one. (2) Both for the north and south crests, the TEC-CTR at 120°E longitude showed a semi-annual variation with maximum peak values occurring in the equinoctial months. (3) TEC-CTR for the north crest has lower values in summer than in winter, whereas TEC-CTR for the south crest does not show this ‘winter anomaly’ effect. In other words, TEC-CTR for both the north and south crests has higher values in the northern hemispheric winter than in the northern hemispheric summer. (4) TEC-CTR in the daytime post-noon hours (12–14 LT) does not vary much with the solar activity, however, TEC-CTR in the post-sunset hours (19–21 LT) shows a clear dependence on the solar activity, its values increasing with solar activity. 相似文献
18.
T. Moreau E. Cadier F. Boy J. Aublanc P. Rieu M. Raynal S. Labroue P. Thibaut G. Dibarboure N. Picot L. Phalippou F. Demeestere F. Borde C. Mavrocordatos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(6):1870-1886
This paper describes an innovative method for processing nadir altimeter data acquired in Synthetic Aperture Radar (SAR) mode, enhancing the system performances over open ocean. Similarly to the current SAR data processing scheme, the so-called LR-RMC (Low Resolution with Range Migration Correction) method, originally designed by Phalippou and Demeester (2011), includes Doppler beam forming, Doppler shift correction and range correction. In LR-RMC, however, an alternative and less complex averaging (stacking) operation is used so that all the Doppler beams produced in a radar cycle (4 bursts of 64 beams for the open-burst Sentinel-3-mode altimeter) are incoherently combined to form a multi-beam echo. In that manner, contrarily to the narrow-band SAR technique, the LR-RMC processing enlarges the effective footprint to average out the effects of surface waves and particularly those from small sub-mesoscale structures (<1 km) that are known to impact SAR-mode performances. On the other hand, the number of averaged beams is as high as in current SAR-mode processing, thus providing a noise reduction at least equally good. The LR-RMC method has the added benefit of reducing the incoherent integration time with respect to the SAR-mode processing (50 ms compared to 2.5 s) limiting possible surface movement effects. By processing one year of Sentinel-3A SRAL SAR-mode data using the LR-RMC method, it is shown that the swell impact on the SAR altimeter performances is totally removed and that an improvement of 10–50% is obtained in the measurement noise of the sea surface height and significant wave height with respect to SAR mode. Additionally, observational capabilities over the middle scales are enhanced potentially allowing the ocean mesoscale features to be retrieved and observations assimilated more usefully in ocean models. 相似文献
19.
Zhiguo Deng Steffen Schön Hongping Zhang Michael Bender Jens Wickert 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The MSTIDs are wave-like perturbations of the ionospheric plasma, which cause the most common ionospheric disturbances in mid-latitude regions. Generally the MSTIDs have velocities of several hundred meters per second and wavelengths of several hundred kilometers. The wave-like effect of the MSTID is one of the main obstacles for accurate interpolation of ionospheric corrections in a medium-scale reference GPS network. In this paper we show a new method of detecting and modeling MSTIDs using dense German GPS network. The between-epoch single difference ionospheric delays from a medium scale dense GPS network are used to estimate the parameter of the MSTID e.g. amplitude, wavelength and velocity. The efficiency of the approach is tested with data from about 320 GPS stations in and near Germany. A MSTID wave moving from east to west across Germany was observed at September 27 in 2009. Its wavelength is about 302 km, with a period of ∼7 min and velocity of about 700 m/s. 相似文献
20.
利用风云三号C星(FY-3C)微波温湿探测仪(MWHTS)的实测亮温数据,开展了中低纬度(40° S-40°N)区域海面气压反演研究.MWHTS 118.75 GHz氧气通道的辐射亮温测量值与氧气气柱总量密切相关,可用于反演海面气压.根据辐射传输方程分析了MWHTS 8个氧气通道对海面气压的敏感性.结果表明,与位于氧气... 相似文献