首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
As a typical semiarid farming-pastoral ecotone sensitive to the environmennt, the Plain of West Liaohe Basin (WLBP) is currently experiencing drastic environmental changes. To identify how environmental change affect vegetation in the WLBP, we analysed spatiotemporal variation characteristics of Ecological environment factors based on monthly and annual air temperature (T), precipitation (P) and Normalized Difference Vegetation Index (NDVI) from 1982 to 2015. And the correlations between them were investigated by correlation analysis (Simple correlation, partial correlation and complex correlation) at temporal and spatial scale. The results showed that: (1) the vegetation growth of the WLBP showed ameliorated trend, with a change rate of 0.004/yr.; (2) P was more sensitive to NDVI than T; (3) and the influence of hydrothermal changes on vegetation growth was more significant than that of the change of single climate factors at time scales; (4) the effects of anthropogenic factors on vegetation change were 75.07% (1982–1993) and 98.08% (1994–2015), respectively. At the temp-special scales, P&T and land use type change (LUCC) were the main climatic and anthropogenic factors that affect vegetation changes, respectively.  相似文献   

2.
Earth Radiation Budget (ERB) data from Nimbus-7 over the period November 1978 – June 1980 has consistently shown strong hemispheric differences when analyzed over different temporal and spatial scales. Hemispheric variations in time latitude cross sections of net and emitted radiation were found to be caused by changes in the Earth-Sun distance and continental effects.Maps of annual range for the entire Earth calculated from monthly averages showed areas of high and low variability of the different ERB parameters. The ERB of these regional areas were examined and most of the variability was found to lay in the large amplitude of the annual solar cycle. Variations in the global annual cycle of albedo /1/ are studied with respect to differences in latitudinal averaged albedo. The anomaly in the annual cycle of global averaged albedo was found to be caused by tropical albedo changes.  相似文献   

3.
Solar variability effects studied by tree-ring data wavelet analysis   总被引:7,自引:0,他引:7  
The global change approach to study the Sun-Earth system gives a growing amount of evidences that climate dynamics is affected by a large number of factors. The solar variability is very likely to be among them. Natural records, such as tree ring data, can be investigated to study the past global and regional climate, which was influenced by the solar radiative output variations, associated to solar activity. Wavelet transform analysis was applied to sunspot number and tree ring width time series from 1837 to 1996 at Concórdia, Brazil. The amplitude and cross-amplitude spectral representation in the time-frequency domain allowed us to detect the occurrence of predominant periodicities and the relationship between the sunspot number and the tree ring time series. The Morlet complex wavelet analysis was used to study the most important variability factors on time scales ranging from from 2 to 100 years, and their stability in time, which is shown in both time series studied. We also applied the cross-wavelet spectral analysis to evaluate time delay among different tree ring time series, and between tree ring and sunspot number time series.  相似文献   

4.
A status report on the empirical modeling of ionospheric electron and ion temperatures is given with special emphasis on the models used in the International Reference Ionosphere (IRI).Electron temperature models have now reached a state where reliable prediction of the mean altitudinal, latitudinal and diurnal variations is possible. These models are largely based on satellite measurements, but comparisons with incoherent scatter radar measurements have shown excellent agreement. Variations with season and magnetic and solar activity seem to be small and are not yet included consistently in these models.Similar to the electron temperature, the ion temperature shows the largest variations with altitude, latitude and local time. But due to the larger mass, these variations are smoother and more steady in the case of the ions and therefore easier to model. Nevertheless, very few ion temperature models exist. The IRI model takes advantage of the observed concurrence of the ion temperature with the neutral temperature at low altitudes and with the electron temperature at high altitudes.  相似文献   

5.
In this paper, seasonal sea level variations have been determined at five locations in the Baltic Sea from satellite altimetry for the period 1993–2015. The results were compared to tide gauge water level data. Annual and semi-annual amplitudes have been investigated for both sea level anomalies and tide gauge water level. It was found that the two independent observations of sea level variations along the Polish coast are in good agreement both in terms of their annual and semi-annual amplitudes and their annual and semi-annual phases. The annual cycles in the sea level variations measured by altimetry and tide gauge reach maximum values at approximately the same month (November/December).Moreover, this article shows the differences between the annual and semi-annual amplitudes and phases in the sea level anomalies and water level data within the same time frame. The difference in the annual amplitudes between the satellite altimetry and the tide gauge results is between 0.33?cm and 1.53?cm. The maximum differences in the annual cycle of the sea level changes were found at the Swinoujscie station. The correlations between the original series and the calculated curves were determined, and the relationship between the amplitudes and the phases were investigated. The correlation between the annual variations observed from the two independent observation techniques is 0.92.To analyse the dynamics of the change in sea level, the linear trend was estimated from the satellite altimetry and tide gauge time series both in the original time series of the data and in the time series in which seasonal variations were removed. In addition, we calculated the estimated errors of regression and how many years’ worth of data are needed to obtain an accuracy of 0.1?mm per year. The estimated errors of regression showed that to get an accuracy of 0.1?mm per year, we need 100?years of data.  相似文献   

6.
We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effect is observed at low-latitudes followed by high and mid-latitudes region. The extent of saturation effect is more pronounced for F10.7 as compared to EUV. A wavelet transform is applied to global and hemispheric electron contents to examine the relative strength of different variations. The semi-annual variations dominate in the northern hemisphere, whereas annual variations dominate in the southern counterpart. The amplitude of annual variations in southern hemisphere is found to be higher than northern counterpart at all latitudes. This asymmetry in the amplitude of annual variation is maximum at low-latitudes, followed by mid and high-latitudes, respectively. The semi-annual variations are in-phase in both hemisphere and follow the solar cycle. The northern hemisphere depicts relatively large amplitude of semi-annual variations and exhibit the maximum effect at high-latitudes.  相似文献   

7.
基于COSMIC卫星观测的2006年12月29日到2008年1月3日30°-40°N纬度内的温度剖面,分别利用垂直滑动窗、双滤波器和单滤波器三种方法计算低平流层重力波的扰动和势能,获得重力波扰动和势能随高度、经度的分布以及多时间尺度变化特性,分析重力波扰动势能与背景温度及风场的变化趋势和特点.比较三种方法得到的结果发现:垂直滑动窗方法只能去除大垂直尺度的背景,无法抑制小尺度的扰动,其得到的结果误差较大;双滤波器法对温度剖面中的大尺度背景和小尺度扰动都能很好地抑制;单滤波器法得到的重力波扰动中基本不包含垂直方向的大尺度背景,但是包含一些小垂直尺度的扰动.因此,对于垂直波长为10km左右的重力波,采用双滤波器法合适;如果需要得到小尺度重力波的变化特性,采用单滤波器法合适.采用双滤波器法无法得到势能随高度的变化,而采用单滤波器法能够给出每月势能随高度的分布.对30°-40°N纬度内的重力波参数进行统计分析得到重力波扰动、势能与背景温度和水平风场的关系.   相似文献   

8.
Development of new methods for estimating biophysical parameters can be considered one of the most important targets for the improvement of grassland parameters estimation at full canopy cover. In fact, accurate assessment methods of biophysical characteristics of vegetation are needed in order to avoid the uncertainties of carbon terrestrial sinks.

Remote sensing is a valid tool for scaling up ecosystem measurements towards landscape levels serving a wide range of applications, many of them being related to carbon-cycle models. The aim of this study was to test the suitability of satellite platform sensors in estimating grassland biophysical parameters such as LAI, biomass, phytomass, and Green herbage ratio (GR). Also, we wanted to compare some of the most common NIR and red/green-based vegetation indices with ones that also make use of the MIR band, in relation to their ability to predict grassland biophysical parameters.

Ground-truth measurements were taken on July 2003 and 2004 on the Monte Bondone plateau (Italian Alps, Trento district) in grasslands varying in land use and management intensities. From satellite platforms, an IRS-1C-LISS III image (18/07/2003; 25 m resolution in the visible-NIR and 70 m resolution in the MIR) and a SPOT 5 image (27/07/2004, 10 m resolution in the visible-NIR and MIR) were used.

LAI, biomass, and phytomass measurements showed logarithmic relationships with the investigated NIR and red/green-based indices. GreenNDVI showed the highest R2 values (0.59, IRS 2003; 0.60, SPOT 2004). Index saturation occurred above approximately 100–150 g m−2 of biomass (LAI 1.5–2). On the other hand, GR relationships were shown to be linear. MIR-based indices performed better than NIR and red/green-based ones in estimating biophysical variables, with no saturation effect. Biomass showed a linear regression with Canopy Index (MIR/green ratio) and with the Normalised Canopy Index (NCI) calculated as a normalised difference between MIR and green bands (IRS: R2 = 0.91 and 0.90, respectively. SPOT: R2 = 0.63 and 0.64). Similar correlations could also be found for LAI and phytomass, and GR predictability was shown to be higher than NDVI and GreenNDVI. According to these results obtained in the investigated areas, phytomass, biomass, LAI, and GR are linearly correlated with the investigated MIR band indices and as a result, these parameters could be estimated from the adopted satellite platforms with limited saturation problems.  相似文献   


9.
Clouds are important elements in climatic processes and interactions between aerosols and clouds are therefore a hot topic for scientific research. Aerosols show both spatial and temporal variations, which can lead to variations in the microphysics of clouds. In this research, we have examined the spatial and temporal variations in aerosol particles over Pakistan and the impact of these variations on various optical properties of clouds, using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra satellite. We used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to reveal the origins of air masses, with the aim of understanding these spatial and temporal variabilities in aerosol concentrations. We also documented seasonal variations in patterns of aerosol optical depth (AOD) over Pakistan, for which the highest values occur during the monsoon season (June–August). We then analyzed the relationships between AOD and four other cloud parameters, namely water vapour (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). Regional correlation maps and time series plots for aerosol (AOD) and cloud parameters were produced to provide a better understanding of aerosol–cloud interaction. The analyses showed strong positive correlations between AOD and WV for all of the eight cities investigated. The correlation between AOD and CF was positive for those cities where the air masses were predominantly humid, but negative for those cities where the air masses were relatively dry and carried a low aerosol abundance. These correlations were clearly dependent on the meteorological conditions for all of the eight cities investigated. Because of the observed AOD–CF relationship, the co-variation of AOD with CTP and CTT may be attributable to large-scale meteorological variations: AOD showed a positive correlation with CTP and CTT in northern regions of Pakistan and a negative correlation in southern regions.  相似文献   

10.
Drought is an important natural disaster that causes devastating impacts on the ecosystem, livestock, environment, and society. So far, various remote-sensing methods have been developed to estimate drought conditions, each of which has advantages and restrictions. This study aims to monitor the real-time drought indices at the field scales via the integration of various earth observations. Our proposed method consists of two steps. In the first step, the relationships between long-term standardized precipitation indices (SPI) derived from PERSIANN-CDR rainfall data and two drought-dependent parameters derived from MODIS products, including normalized NDVI and soil-air temperature gradient, are obtained at the spatial resolution of PERSIANN-CDR grid (approximately 25 km). As the next step, the corresponding relationships are applied to estimate the drought index maps at the spatial resolution of MODIS products (1 km). Numerous analyses are carried out to evaluate the proposed method. The results revealed that, from various drought indices, including SPIs of different timescales (1, 3, 6, and 12-months), SPI-3 and SPI-6 are more appropriate to the proposed method in terms of correlation with temperature and vegetation parameters. The findings also demonstrate the competency of the proposed method in estimating SPI indices with average RMSE 0.67 and the average correlation coefficient of 0.74.  相似文献   

11.
Based on the ISL data detected by DEMETER satellite, the solar cycle variation in electron density (Ne) and electron temperature (Te) were studied separately in local daytime 10:30 and nighttime 22:30 during 2005–2010 in the 23rd/24th solar cycles. The semi-annual, annual periods and decreasing trend with the descending solar activity were clearly revealed in Ne. At middle and high latitudes, there exhibited phase shift and even reversed annual variation over Southern and Northern hemisphere, and the annual variation amplitudes were asymmetrical at both hemispheres in local daytime. In local nighttime, the annual variations of Ne at south and north hemispheres were symmetrical at same latitudes, but the annual variation amplitudes at different latitudes differed largely, showing obviously zonal features. As for Te, the phase shift in annual variations was not as apparent as Ne with the increase of latitudes at Southern and Northern hemisphere in local daytime. While in local nighttime the reversed annual variations of Te were shown at low latitudinal areas, not at high latitudes as those in Ne. The correlation study on Ne and Te illustrated that, in local daytime, Ne and Te showed strong negative correlation at equator and low latitudes, but during the solar minimum years the correlation between Ne and Te changed to be positive at 25–30° latitudes in March 2009. The correlation coefficient R between Ne and Te also showed semi-annual periodical variations during 2005–2010. While in local nighttime, Ne and Te exhibited relatively weak positive correlation with R being about 0.6 at low latitudes, however no correlation beyond latitudes of 25° was obtained.  相似文献   

12.
An important potential use of ocean color chlorophyll data is to determine other important properties of the marine biosphere, such as primary productivity, new production, and particulate fluxes at spatial scales larger and temporal scales longer than those possible with ground-based observations. Such determinations will likely progress from relatively simple empirical correlations to algorithms that are actually predictive models of ecosystem dynamics. As an exmaple, this paper demonstrates how an empirical correlation between nitrate concentration and new production can be understood by a simple productivity model. Several models are then constructed to examine the functional relationship between total production and surface chlorophyll. The empirical correlation is substantially different than the analogous relation in the model. Understanding the relationship between surface chlorophyll and productivity on a global scale will probably require families of models for various marine ecosystems.  相似文献   

13.
Forest resources are the primary components of the ecosystem environment. Poplars (Populus sp.), a member of the fast-growing trees, are one of the most productive forest tree species for industrial production thanks to their desirable traits comprising rapid growth, hybridization ability, and ease of propagation. Determining poplar cultivated areas and mapping their geographical distributions is critical for planners and decision-makers to increase the ecological and economic benefits of poplar trees. Due to the biodiversity of each geographical region and seasonal vegetation variations, classification based on remotely sensed imagery is essential for cropland monitoring. The main goal of this study is to evaluate the potential of high-resolution multi-temporal (growing season and end of the growing season) Worldview-3 imagery in mapping poplar plantations in the Akyaz? district of Sakarya, Turkey. For this purpose, pixel- and object-based image analysis with up-to-date ensemble learning algorithms, namely random forest (RF), categorical boosting (CB), and extreme gradient boosting tree (XGB), were employed for mapping poplar fields. Results indicated that the object-based classification approach provided statistically significant improvements in map-level (about 4%) and class-level accuracy (e.g., approximately 7% and %2 for poplar and young poplar classes, respectively) than pixel-based classification. While the CB performed superior classification performance for the object-based approach (92.56%), the highest classification performance was obtained with the XGB algorithm for the pixel-based approach (90.42%) for the end of the growing season data. McNemar’s statistical test also confirmed that the performances of CB and XGB algorithms were statistically similar in pixel-based classification. Finally, analysis of multi-season images revealed that sensitivity of the vegetation phenology and seasonal effects considerably affect the separability of poplar tree species.  相似文献   

14.
In this research work, we have performed comparative diurnal variations of atmospheric Potential Gradient (PG) of fair-weather days by using the data of three stations installed in Northern, Pakistan for the year 2018. We investigated the impact of both local and global factors and meteorological parameters in the diurnal variation of atmospheric Potential Gradient on the annual and seasonal time scale. We observed two peaks, primary and secondary. This is because of the land-based measurements of annual and seasonal variations. The annual average curve of Potential Gradient of all three stations: Islamabad (CES), Muzaffarabad (MZF), and Balakot (BKT) demonstrated a notable deviation from the standard oceanic Carnegie curve. The atmospheric Potential Gradient variations are due to numerous meteorological factors e.g., air pollution, humidity, aerosol particles, fog, and temperature. Among three stations, the MZF station is located in highland (mountainous) and it demonstrated a higher atmospheric Potential Gradient. We further differentiate the results of our three stations with global results for authenticity and observed coherence between them. In addition, a positive correlation of fair-weather Potential Gradient is observed with temperature and a notable correlation between relative humidity and atmospheric Potential Gradient for all the three observatories.  相似文献   

15.
Direct radiative forcing from black carbon aerosols over urban environment   总被引:1,自引:0,他引:1  
There is growing evidence that the earth’s climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents and motor vehicle exhausts, etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC indicate high BC concentrations during 6:00–9:00 and 19:00–23:00 h. Weekday variations of BC concentrations increase gradually from Monday to Wednesday and gradually decrease from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to the scavenging by air. The fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface is −33 Wm2 and at the top of the atmosphere (TOA) above 100 km it is observed to be +9 Wm−2. The results have been discussed in detail in the paper.  相似文献   

16.
Moderate Resolution Imaging Radiometer (MODIS) gross primary productivity (GPP) has been used widely to study the global carbon cycle associated with terrestrial ecosystems. The retrieval of the current MODIS productivity with a 1 × 1 km2 resolution has limitations when presenting subgrid scale processes in terrestrial ecosystems, specifically when forests are located in mountainous areas, and shows heterogeneity in vegetation type due to intensive land use. Here, we evaluate MODIS GPP (MOD17) at Gwangneung deciduous forest KoFlux tower (deciduous forest; GDK) for 2006–2010 in Korea, where the forests comprise heterogeneous vegetation cover over complex terrain. The monthly MODIS GPP data overestimated the GDK measurements in a range of +15% to +34% and was fairly well correlated (R = 0.88) with the monthly variability at GDK during the growing season. In addition, the MODIS data partly represented the sharp GPP reduction during the Asian summer monsoon (June–September) when intensive precipitation considerably reduces solar radiation and disturbs the forest ecosystem. To examine the influence of subgrid scale heterogeneity on GPP estimates over the MODIS scale, the individual vegetation type and its area within a corresponding MODIS pixel were identified using a national forest type map (∼71-m spatial resolution), and the annual GPP in the same area as the MODIS pixel was estimated. This resulted in a slight reduction in the positive MODIS bias by ∼10%, with a high degree of uncertainty in the estimation. The MODIS discrepancy for GDK suggests further investigation is necessary to determine the MODIS errors associated with the site-specific aerodynamic and hydrological characteristics that are closely related to the mountainous topography. The accuracy of meteorological variables and the impact of the very cloudy conditions in East Asia also need to be assessed.  相似文献   

17.
Airglow intensities and rotational temperatures of the OH(6-2) and O2b(0-1) bands acquired at El Leoncito (32°S, 69°W) provide good annual coverage in 1998–2002, 2006, and 2007, with between 192 and 311 nights of observation per year. These data can therefore be used to derive the seasonal variations during each of these seven years, in airglow brightness and temperatures at altitudes of 87 and 95 km. From 1998 to 2001, seasonal variations are similar enough so that they can be well represented by a mean climatology, for each parameter. On the other hand, these climatologies do not agree with what is usually observed at other sites, maybe due to the particular orographic conditions at El Leoncito. With respect to the last three fully documented years (2002, 2006, and 2007), the similarity from year to year deteriorates, and there are greater differences in the seasonal behaviour, more or less in all the parameters. The differences include, e.g., maxima occurring earlier or later than “normal”, by one or two months. All this may suggest the build-up of a new regime of intraseasonal variability, with a possible relationship to corresponding changes in wave activity.  相似文献   

18.
Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic flux region within a complex of active regions, Hale No. 16918. This analysis was done as a part of a continuing study of the circumstances associated with flares in Hale Region 16918, which was designated as an FBS target during the interval 18 – 23 June 1980. We studied the initiation and development of both major and minor flares in Hα images in relation to the identified potential flare sites at the boundaries of the growing flux region and to the general development of the new flux. This study lead to our recognition of a spectrum of possible relationships of growing flux regions to flares as follows: (1) intimate interaction with adjacent old flux — flare sites centered at new/old flux boundary, (2) forced or “intimidated” interaction in which new flux pushes old field having lower flux density towards a neighboring old polarity inversion line where a flare then takes place, (3) “influential” interaction — magnetic lines of force over an old polarity inversion line, typically containing a filament, reconnect to the new emerging flux; a flare occurs with erupting filament when the magnetic field overlying the filament becomes too weak to prevent its eruption, (4) inconsequential interaction — new flux region is too small or has wrong orientation for creating flare conditions, (5) incidental — flare occurs without any significant relationship to new flux regions.  相似文献   

19.
Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.  相似文献   

20.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号