首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   

2.
针对目前空间碎片问题,提出空间碎片发动机概念,立足于使用捕获到的空间碎片,转化为发动机可用的推进剂。在完成碎片清理目标的同时,获得可持续的动力来源,延长清理器的工作寿命。针对空间碎片制粉的方法进行研究,提出使用球磨仪对金属样本进行研磨。使用转刀式粉碎机对非金属材料进行粉碎。通过实验发现,多数粉末粒径达到微米量级。针对空间碎片粉末推进方式进行研究,提出使用静电加速推进方式对粉末进行加速。空间碎片发动机虽然起源于空间碎片清理任务,但是可持续的推进剂供应,也将为小行星探测等任务提供更好的思路。  相似文献   

3.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   

4.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   

5.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

6.
Attitude is the important parameter for active debris removal and collision avoidance. This paper deduced the spin axis orientation and spin period of the rocket body, CZ-3B R/B (NORAD ID 38253), using the satellite laser ranging and light curve data measured with single-photon detector at Graz station. The epoch method and LC & SLR residuals fitting were combined to determine these values. The derived right ascension angle was around 220°, the declination angle was near 64° and the sidereal period was calculated to be 117.724 s, for 2017-07-03. The results derived from the two distinct methods were mutually validated. Rocket bodies are a major contributor to space debris and this work provides a reference for attitude determination and attitude modelling.  相似文献   

7.
This paper summarizes two new satellite impact experiments. The objective of the experiments was to investigate the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low-velocity of 1.5 km/s using a 40-g aluminum alloy sphere. The second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-g aluminum alloy sphere. The target satellites were 15 cm × 15 cm × 15 cm in size and 800 g in mass. The ratios of impact energy to target mass for the two experiments were approximately the same. The target satellites were completely fragmented in both experiments, although there were some differences in the characteristics of the fragments. The projectile of the low-velocity impact experiment was partially fragmented while the projectile of the hyper-velocity impact experiment was completely fragmented beyond recognition. To date, approximately 1500 fragments from each impact experiment have been collected for detailed analysis. Each piece has been weighed, measured, and analyzed based on the analytic method used in the NASA Standard Breakup Model (2000 revision). These fragments account for about 95% of the target mass for both impact experiments. Preliminary analysis results will be presented in this paper.  相似文献   

8.
As the pace of human exploration and utilization of space continues to accelerate, space debris gradually becomes an inevitable problem affecting and threatening human space activities. When space debris strikes the spacecraft bulkhead, determining the impact source location timely and accurately is the foundation of the repair damage, and is also of great importance for the safety of astronauts' life. This paper analyzed the wave propagation law in thin plates, established a lightweight sensor array using PVDF (Polyvinylidene fluoride) circular thin-film sensors, and used a two-stage light-gas gun loading system to conduct hypervelocity collision localization experiments on impacting 2A12 aluminum plates to study the effects of sensor array radius and sensor size on localization results. The results show that the smaller the radius of the PVDF sensor array is, the more accurate the positioning result is under the premise of the same size of the PVDF circular film sensor array. On the premise of the same PVDF sensor array arrangement, the larger the PVDF circular membrane sensor is, the more accurate the positioning result is. ABAQUS finite element software is used to study the stress wave propagation of aluminum ball impacting aluminum plate at high speed, simulating space debris impacting spacecraft. The stress waveform obtained from the simulation is in good agreement with the experiment, which shows the accuracy of the numerical simulation method.  相似文献   

9.
Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.  相似文献   

10.
Tumbling debris has become a great threat to orbit activities. Contactless interaction is a novel concept for active debris removal, through which the tumbling debris no longer rotates freely but is under control. The contactless interaction method aims to de-tumble the debris and then maintain desired relative states between the spacecraft and debris. The spacecraft is simultaneously stabilized through three-axis attitude control, which makes the de-tumbling and capture operation much safer, more effective and accurate. The dynamics and control for the contactless interaction have been little studied in the past years. This paper considers a generic dynamics and control problem for contactless interaction between a spacecraft and debris. A translational and rotational dynamics model of contactless interaction is proposed and the 6-DOF equations are established. The contactless interaction control law is designed with the backstepping method, and the spacecraft three-axis control law is designed with the PD control. Simulation results show that the angular momentum is transferred from the debris to the spacecraft and the debris is thus de-tumbled. The desired relative states are achieved efficiently. Significantly, the spacecraft and debris no longer rotate in the inertial frame and, hence, the safety and accuracy for capture operation are guaranteed.  相似文献   

11.
Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris.  相似文献   

12.
空间碎片的不断增加给人类航天活动的开展和在轨资产的安全造成严重威胁。在已经提出的多种空间碎片主动清除方式中,绳系拖曳(tethered space tug,TST)系统因有较好的应用前景而受到广泛关注。部分失效航天器因星上器件损坏且姿态控制系统异常,始终将姿态维持在某一特定指向,针对此类具有典型的非合作特征的大型空间碎片,开展绳系拖曳动力学与控制研究。将拖船和目标均视作刚体,用牛顿法建立了TST系统的动力学模型;根据目标姿态稳定方式分为自旋稳定和三轴稳定两种情况,开展了绳系拖曳动力学分析与控制设计,并考察了系绳在失效航天器表面连接点位置对系统稳定状态的影响。仿真结果表明,拖船和失效航天器会在系绳连接下表现出抗衡特点,最终系统会稳定在不同的均衡状态附近。此研究为安全清除尚有残余姿态控制能力的失效航天器中相关拖曳动力学与控制问题提供了参考。  相似文献   

13.
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield.  相似文献   

14.
针对空间碎片清理问题,提出了一种利用航天器与空间碎片混合编队队形重构控制技术捕获碎片的方法。首先,分析了地/月—日系L2拉格朗日平动点附近的限制性三体环境,并建立了编队卫星相对运动动力学模型;其次,提出了以太阳光压力作为航天器与空间碎片编队队形重构的控制力,实现各从星接近空间碎片的目的;最后,设计了基于线性二次型的最优控制器,并在Matlab/Simulink环境下进行仿真实验。仿真结果表明该方法可控制从星到达期望的位置(空间碎片的位置),且太阳帆板的姿态变化在可控范围内,进而证明了该方案可以应用于复杂空间环境下的碎片清理任务。  相似文献   

15.
The space environment around the Earth is populated by more than 130 million objects of 1 mm in size and larger, and future predictions shows that this amount is destined to increase, even if mitigation measures are implemented at a far better rate than today. These objects can hit and damage a spacecraft or its components. It is thus necessary to assess the risk level for a satellite during its mission lifetime. Few software packages perform this analysis, and most of them employ time-consuming ray-tracing methodology, where particles are randomly sampled from relevant distributions. In addition, they tend not to consider the risk associated with the secondary debris clouds. The paper presents the development of a vulnerability assessment model, which relies on a fully statistical procedure: the debris fluxes are directly used combining them with the concept of vulnerable zone, avoiding the random sampling the debris fluxes. A novel methodology is presented to predict damage on internal components. It models the interaction between the components and the secondary debris cloud through basic geometrical operations, considering mutual shielding and shadowing between internal components. The methodologies are tested against state-of-the-art software for relevant test cases, comparing results on external structures and internal components.  相似文献   

16.
17.
Removing orbital debris with lasers   总被引:2,自引:0,他引:2  
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.  相似文献   

18.
An active debris removal parametric study for LEO environment remediation   总被引:2,自引:0,他引:2  
Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited interest in using active debris removal (ADR) to remediate the environment. There are, however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to explore different operational options to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the existing satellites and the benefits of collision avoidance maneuvers are also included.  相似文献   

19.
光学手段在天基空间碎片探测中被广泛应用,但容易受到杂光等因素影响。结合在轨试验数据,从探测器和碎片两方面分析了影响天基空间碎片光学探测的因素。影响探测器探测效果的因素包括太阳光、月光、地气光、大气辉光等杂光及南大西洋异常区辐射等;影响碎片可见性的因素包括地球遮挡、地影及反射的太阳光等。分别给出了上述影响因素涉及的特征量及规避影响的计算方法。基于某天基探测设备的仿真结果表明,上述影响在自然交会及姿态机动模式下均可能发生,在试验设计时需被充分考虑。最后,针对某天基空间碎片探测任务进行了规划。文章对天基光学探测试验设计具有一定的指导意义。  相似文献   

20.
Recent plans for large constellations in Low-Earth Orbit have opened the debate on both their vulnerability and their influence on the already hazardous space debris environment. In fact, given that large constellations normally employ satellites of small size, there might be situations in which cm-size debris could have enough energy to cause fragmentation of a significant part of these spacecraft upon impact, while smaller debris could affect the functionalities of critical subsystems, even compromising the success of disposal operations planned at end-of-life. In this context, this paper investigates: (1) collisions with large objects that could initiate the fragmentation of a significant part of the satellite, and (2) impacts with small debris that might perforate the spacecraft hull thus causing relevant performance/functionality degradation. These two points are merged in a simple statistical tool for risk assessment, which analyses the effects of the main parameters of the constellations on its vulnerability (i.e. operational life, number of satellites, spacecraft cross section, satellites reliability). In more details, the tool relates impact probability (for both small and large debris) to the ballistic response of spacecraft structures and protections, defining the critical configurations that might compromise the expected disposal operations. This method requires a limited knowledge of the spacecraft internal layout, as it is based on a statistical analysis of impact damage instead of a complete evaluation of the vulnerability of each subsystem. In parallel, non-debris related failures are also investigated and statistic models of spacecraft reliability characteristic are proposed. Among the results, it is shown that reducing the lifetime of individual satellites in a constellation might improve the success rate of post-mission disposal, thanks to the reduction of the spacecraft exposure to the space environment with the consequential degradation of its performance. On the other hand, reducing the lifetime would seriously affect the debris environment: the increase in traffic in the most crowded altitudes would be not counterbalanced by the higher post mission disposal success rate, causing an overall increase of the total number of uncontrolled resident objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号