共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):390-407
As the pace of human exploration and utilization of space continues to accelerate, space debris gradually becomes an inevitable problem affecting and threatening human space activities. When space debris strikes the spacecraft bulkhead, determining the impact source location timely and accurately is the foundation of the repair damage, and is also of great importance for the safety of astronauts' life. This paper analyzed the wave propagation law in thin plates, established a lightweight sensor array using PVDF (Polyvinylidene fluoride) circular thin-film sensors, and used a two-stage light-gas gun loading system to conduct hypervelocity collision localization experiments on impacting 2A12 aluminum plates to study the effects of sensor array radius and sensor size on localization results. The results show that the smaller the radius of the PVDF sensor array is, the more accurate the positioning result is under the premise of the same size of the PVDF circular film sensor array. On the premise of the same PVDF sensor array arrangement, the larger the PVDF circular membrane sensor is, the more accurate the positioning result is. ABAQUS finite element software is used to study the stress wave propagation of aluminum ball impacting aluminum plate at high speed, simulating space debris impacting spacecraft. The stress waveform obtained from the simulation is in good agreement with the experiment, which shows the accuracy of the numerical simulation method. 相似文献
2.
3.
快速准确地分析空间碎片群轨道演化行为对于其他在轨航天器碰撞规避至关重要。在各摄动力的作用下,空间碎片群演化运动呈现出复杂的非线性特征。空间碎片群体个体数量巨大,如果通过对空间碎片群中每个空间碎片进行轨道积分来分析群体预报的方法会导致计算量过大。针对该问题,提出一种基于多项式近似的轨道快速预报分析方法。该方法将空间碎片群分为少量的标称碎片和其他大量关联碎片。针对标称碎片的轨道预报采用数值积分求解保证预报精度;而针对其他大量的关联碎片轨道预报问题,采用多项式泰勒展开半解析方法求解,从而在保证预报精度的前提下有效减少空间碎片群轨道预报的计算量。为了验证方法的有效性,对不同空间碎片群进行了轨道预报仿真。仿真结果表明,当轨道预报精度设定在1m范围内时,多项式近似算法的计算量较蒙特卡洛方法计算效率提高了2.2~17.2倍,验证了所提出方法的有效性。 相似文献
4.
Estrella Olmedo Noelia Sánchez-Ortiz Nuria Guijarro Jaime Nomen Holger Krag 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In the framework of a potential European Space Situational Awareness System (ESSAS), we propose some optical strategies such that try to minimize the requirement of tracking measurements for the orbit determination computation when the catalogue is under construction. We will analyse them in terms of coverage, timeliness and orbit determination accuracy by means of the AS4 simulator (developed by Deimos Space S.L.U.). Moreover, observation campaigns have been performed from La Sagra Observatory in order to check the applicability of those strategies. These strategies are used for defining different choices for the future European Optical Space Surveillance System in the framework of the ESA contract no. 22738/09/D/HK. 相似文献
5.
Hanspeter Schaub Zoltán Sternovsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug–debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties. 相似文献
6.
Georg Kirchner Franz Koidl Fabian Friederich Ivo Buske Uwe Völker Wolfgang Riede 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In order to test laser ranging possibilities to space debris objects, the Satellite Laser Ranging (SLR) Station Graz installed a frequency doubled Nd:YAG pulse laser with a 1 kHz repetition rate, a pulse width of 10 ns, and a pulse energy of 25 mJ at 532 nm (on loan from German Aerospace Center Stuttgart – DLR). We developed and built low-noise single-photon detection units to enable laser ranging to targets with inaccurate orbit predictions, and adapted our standard SLR software to include a few hundred space debris targets. With this configuration, we successfully tracked – within 13 early-evening sessions of each about 1.5 h – 85 passes of 43 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from >15 m2 down to <0.3 m2, and measured their distances with an average precision of about 0.7 m RMS. 相似文献
7.
8.
M. Murawiecka A. Lemaitre 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(3):935-940
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with ?20–30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200?y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales. 相似文献
9.
Rong-yu Sun Chang-yin Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images. 相似文献
10.
W. Kuiper G. Drolshagen R. Noomen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Micro-meteoroid and space debris impact risk assessments are performed to investigate the risk from hypervelocity impacts to sensitive spacecraft sub-systems. For these analyses, ESA’s impact risk assessment tool ESABASE2/Debris is used. This software tool combines micro-particle environment models, damage equations for different shielding designs and satellite geometry models to perform a detailed 3D micro-particle impact risk assessment. This paper concentrates on the impact risk for exposed pressurized tanks. Pressure vessels are especially susceptible to hypervelocity impacts when no protection is available from the satellite itself. Even small particles in the mm size range can lead to a fatal burst or rupture of a tank when impacting with a typical collision velocity of 10–20 km/s. For any space mission it has to be assured that the impact risk is properly considered and kept within acceptable limits. The ConeXpress satellite mission is analysed as example. ConeXpress is a planned service spacecraft, intended to extend the lifetime of telecommunication spacecraft in the geostationary orbit. The unprotected tanks of ConeXpress are identified as having a high failure risk from hypervelocity impacts, mainly caused by micro-meteoroids. Options are studied to enhance the impact protection. It is demonstrated that even a thin additional protective layer spaced several cm from the tank would act as part of a double wall (Whipple) shield and greatly reduce the impact risk. In case of ConeXpress with 12 years mission duration the risk of impact related failure of a tank can be reduced from almost 39% for an unprotected tank facing in flight direction to below 0.1% for a tank protected by a properly designed Whipple shield. 相似文献
11.
Yunfeng Yu Fei Yang Honghao Yue Yifan Lu Shaozhen Li Haihong Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(6):1816-1829
Capturing large space debris with complex rotational motion is extremely challenging. A de-tumbling phase before capturing may be necessary to reduce the risk of collision with debris. This paper proposes a new noncontact de-tumbling method using a two-satellite electromagnetic formation, in which two small electromagnetic satellites, each having a high-temperature superconducting coil, generate control torques to reduce the rotation rate of debris prior to making any physical contact. The electromagnetic interaction of the target-satellite system is analyzed. A relative translational dynamics of the target–satellite system and the attitude dynamics of the target are established. Simulation results show that the proposed method effectively eliminates the rotational motion of the target. It can be safely concluded that the noncontact method for de-tumbling space debris using a two-satellite electromagnetic formation is feasible and potentially applicable to on-orbit capture. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(7):1714-1722
The space debris environment is one of the major threats against payloads. Space debris orbital distribution is of great importance for space debris environment modeling. Due to perturbation factors, the Right Ascension of Ascending Node (RAAN) of space objects changes consistently, causing regular rotation of the orbit plane around Earth’s axis. Based on the investigation of the RAAN perturbation rate of concerned objects, this paper proposes a RAAN discretization method in order to present the space debris longitude-dependent distribution. Combined with two line element (TLE) data provided by the US Space Surveillance Network, the estimated value from RAAN discretization method is compared with the real case. The results suggest that using only the initial orbital data at the beginning of the time interval of interest, the RAAN discretization method is able to provide reliable longitude distribution of concerned targets in the next following period. Furthermore, spacecraft cumulative flux against space debris is calculated in this paper. The results suggest that the relevance between spacecraft RAAN setup and flux output is much smaller for LEO targets than MEO targets, which corresponds with the theory analysis. Since the nonspherical perturbation is the major factor for RAAN variation, the RAAN perturbation rate has little connection with the size of orbital objects. In other words, the RAAN discretization method introduced in this paper also applies to space debris of different size range, proposing a possible suggestion for the improvement of space debris environment engineering models. 相似文献
13.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(3):1083-1094
Operational spacecraft are facing a risk of collision with space debris objects. The net capturing method has been proposed to mitigate this risk on spacecraft. The mass-spring model is usually applied for net modeling by discretizing a cable into one or several mass-spring-damper elements in simulation. The absolute nodal coordinates formulation (ANCF) has also been applied to model the net, and this model is able to describe the flexibility of a net using less elements. However, the influence on the net behavior in simulation by the flexibility modeling of a net is not well understood and barely discussed. In this paper, flexibility models of a net are established based on the mass-spring model and the ANCF model,respectively. The influence on the net behavior by the flexibility modeling is, for the first time, analyzed via simulations. Two case studies of capturing a ball and a cube shaped targets are performed. It is found that the flexibility modeling has little influence on the net dynamics in simulation. Finally, the characteristics and benefits of the ANCF model are described and analyzed. A drawback of the ANCF model was found to be its inferior computational performance. 相似文献
14.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(11):2692-2710
The space environment around the Earth is populated by more than 130 million objects of 1 mm in size and larger, and future predictions shows that this amount is destined to increase, even if mitigation measures are implemented at a far better rate than today. These objects can hit and damage a spacecraft or its components. It is thus necessary to assess the risk level for a satellite during its mission lifetime. Few software packages perform this analysis, and most of them employ time-consuming ray-tracing methodology, where particles are randomly sampled from relevant distributions. In addition, they tend not to consider the risk associated with the secondary debris clouds. The paper presents the development of a vulnerability assessment model, which relies on a fully statistical procedure: the debris fluxes are directly used combining them with the concept of vulnerable zone, avoiding the random sampling the debris fluxes. A novel methodology is presented to predict damage on internal components. It models the interaction between the components and the secondary debris cloud through basic geometrical operations, considering mutual shielding and shadowing between internal components. The methodologies are tested against state-of-the-art software for relevant test cases, comparing results on external structures and internal components. 相似文献
15.
Myrtille Laas-Bourez Gwendoline Blanchet Michel Boër Etienne Ducrott Alain Klotz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1270-1278
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented. 相似文献
16.
Chang-Yin Zhao Ming-Jiang Zhang Hong-Bo Wang Wei Zhang Jian-Ning Xiong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Based on the orbital resonance model, we study the two-dimensional phase plane structure of the motion of space debris orbiting the geosynchronous ring under the combined effects of the tesseral harmonics J22, J31 and J33 of the Earth’s gravitational field. We present the main characteristic parameters of the two-dimensional phase plane structure. We also analyze the stability of the two-dimensional phase plane structure with numerical method. Our main findings indicate that the combined effects of the tesseral harmonics J22, J31 and J33 fully determine the two-dimensional phase plane structure of the space debris, and it remains robust under the effect of the Earth’s actual gravitational field, the luni-solar perturbations and the solar radiation pressure with the normal area-to-mass ratios. 相似文献
17.
Myrtille Laas-Bourez David Coward Alain Klotz Michel Boër 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The two TAROT (Télescopes à Action Rapide pour les Objets Transitoires; Rapid Action Telescopes for Transient Objects) installations are fully robotic optical observatories with optimized observation scheduling, data processing and archiving. Zadko is a 1 m telescope in Western Australia. The fully robotisation of the Zadko telescope has just been completed; it is now included in the TAROT network. In this paper we provide an overview of this international network of robotic optical telescopes. We discuss the advantages of using the network to participate in a satellite and space debris tracking program. This network will access almost all geostationary belt objects, and provide the first real-time satellite positioning capability. The inclusion of the 1 m Zadko telescope into the network significantly extends the efficiency and sensitivity of the existing two telescope configuration. 相似文献
18.
19.
Althea V. Moorhead Mark Matney 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):384-392
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km. 相似文献
20.
Paweł Lejba Tomasz Suchodolski Piotr Michałek Jacek Bartoszak Stanisław Schillak Stanisław Zapaśnik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(10):2609-2616
The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014–2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10?Hz repetition rate, a pulse width of 3–5?ns and a pulse energy of 450?mJ for green (532?nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS).Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 – January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10?s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters. 相似文献