首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
基于Busemann双翼的三维高超声速机翼研究   总被引:1,自引:1,他引:0  
刘姝含  朱战霞 《航空学报》2018,39(6):121405-121405
为研究Busemann双翼翼型在高超声速机翼上的应用,构建了一种基于Busemann双翼翼型的高超声速机翼,研究其在高超声速流动中的气动特性和温度对其前6阶模态固有频率的影响。针对高超声速流动的复杂性和高超声速机翼涉及学科的多样性,首先从理论上证明高超声速Busemann双翼能够提高升阻比,然后通过数值模拟研究了Busemann双翼在高超声速流动中的气动特性,及其增升减阻和减小翼尖涡的机理,并使用分层理论简化高超声速机翼所涉及学科之间的复杂耦合关系,研究了温度对高超声速Busemann双翼模态的影响。结果表明:在高超声速流动中,Busemann双翼能够显著提高升阻比并减小翼尖涡的强度,相对于菱形单翼,Busemann双翼的升力系数增加了28.95%,阻力系数增大了13.58%,升阻比提高了13.53%,升阻比提高较为明显;同时,在1 300℃时,相对于菱形单翼的一阶固有频率,Busemann双翼的一阶固有频率提高了99.8%,说明Busemann双翼具有更好的抗弯能力;相对于在20℃时的一阶固有频率,Busemann双翼在1 300℃时的一阶固有频率下降了34.2%,说明不能忽略高温对Busemann双翼结构性能的影响。  相似文献   

2.
为了提高超声速气动构型的升阻比,减小激波阻力,使用反设计方法结合CFD技术优化Licher双翼,实际算例表明,来流马赫数1.7,无粘情况下只需迭代15步即可得到优化结果,优化后翼型波阻可减小25.5%,升阻比提高30.5%。随后依据翼型目标压力分布这一反设计关键点,分析了非零迎角下翼型各边的受力情况,指出了原目标压力分布的不足,并提出了一种新的阶梯形目标压力分布形式,该方法的优化结果可使升阻比提高49.8%。此外基于NS方程的优化结果表明,原目标压力分布的优化效果被削弱,升阻比仅能提高17%,而新目标压力分布的优化结果受到的影响较小,升阻比仍可提高49.2%,说明在考虑流动粘性特征时,阶梯形目标压力分布形式更具实用价值。  相似文献   

3.
为研究高超声速可变形双翼在不同迎角和不同马赫数条件下的气动特性,并针对在给定的迎角和马赫数条件下可变形双翼的舵面偏转角选取困难的问题,通过结合二分法、遗传算法和高斯牛顿算法对处于不同迎角和不同马赫数条件下的可变形双翼的舵面偏转角进行了选取确定,分析了可变形双翼的气动特性和舵面偏转角对其气动特性产生影响的机理。研究表明:当来流马赫数为5,迎角从1°~8°变化时,可变形双翼的升阻比明显大于Busemann双翼的升阻比,最大可达4.2倍;当迎角为3°,来流马赫数从0.5~5变化时,可变形双翼的升阻比最大可达Busemann双翼升阻比的3.4倍。结果表明可变形双翼在大迎角和大速度范围内均能保持高升阻比,在高超声速飞行中将具有更好的应用价值和前景。  相似文献   

4.
基于定平面形状的密切锥乘波体设计方法能够显著提高传统乘波体的设计灵活性和整体升阻特性。但是该类乘波体在设计时忽略了三维效应、黏性效应以及头部/前缘的钝化效应,在设计工况下仍会出现溢流,升阻比难以达到最优;另外,这类乘波体仍具有传统乘波体在偏离设计条件下气动特性会出现恶化的不足。因此,有必要在考虑黏性的情况下,针对定平面形状的密切锥乘波体开展全机气动优化设计。结合基于全速域通量求解方法和RANS湍流模型的高精度CFD求解器、鲁棒的结构网格变形方法、自由变形参数化方法、离散伴随方法以及序列二次规划算法,实现了基于离散伴随的高超声速飞行器气动优化设计方法。基于上述方法,针对定平面形状的密切锥乘波体开展了单点和多点的三维整机气动优化设计。在400万多块结构网格、600个设计变量以及303个设计约束条件下,所采用的离散伴随优化方法仅花费2 240CPU小时和3 360CPU小时即完成了三维整机单点和多点的优化设计。结果表明,相较于初始构型,单点优化得到的构型在设计状态下的升阻比提升了近5%;多点优化得到的构型可保证在设计点状态升阻特性没有损失的同时,将非设计点的升阻比提升10%以上,进而在一定程...  相似文献   

5.
为了提高超声速气动构型的升阻比,减小激波阻力,使用反设计方法结合CFD技术优化Licher双翼,实际算例表明,来流马赫数1.7,无粘情况下只需迭代15步即可得到优化结果,优化后翼型波阻可减小25.5%,升阻比提高30.5%。随后依据翼型目标压力分布这一反设计关键点,分析了非零迎角下翼型各边的受力情况,指出了原目标压力分布的不足,并提出了一种新的阶梯形目标压力分布形式,该方法的优化结果可使升阻比提高49.8%。此外基于NS方程的优化结果表明,原目标压力分布的优化效果被削弱,升阻比仅能提高17%,而新目标压力分布的优化结果受到的影响较小,升阻比仍可提高49.2%,说明在考虑流动粘性特征时,阶梯形目标压力分布形式更具实用价值。  相似文献   

6.
本文引入了一种由Busemann超声速双翼理论发展而来的无强激波构型,该构型可明显消弱超声速飞行时带来的波阻和声爆。文中分析了无强波构型的机理和气动特性,介绍了该构型理论研究和应用研究进展,并探讨了该构型在超声速飞行器设计应用中的关键性问题。该理论为未来低声爆超声速飞机的设计提供了一个全新的思路,是未来超声速/高超声速飞行器发展必要的技术基础。  相似文献   

7.
排式充气机翼的高效气动布局研究   总被引:3,自引:0,他引:3  
为了提高充气机翼的刚度特性,需要采用较大厚度的翼型,但厚翼型气动效率整体上又不太高。探讨一种适用于低速充气类飞行器的排式双翼布局方案,并尝试给予后翼一定的初始安装偏转角,同时还研究了双翼相对位置以及翼型特性对该排式双翼布局方案的影响。数值模拟结果表明,后翼前缘驻点附近的高压区增大了前翼下表面的压力,使此种布局较普通单翼布局在中小迎角范围内可以明显提高飞行器的升力和升阻比,其中迎角4°时可将升阻比提高62.8%,而给后翼2°的偏转角可使将升阻比提高幅度达到70.5%。同时,双翼相对位置对飞行器气动性能的影响较为敏感。此外,翼型厚度越大,弯度越小,所提出的排式双翼布局方案提高升阻比的效果越明显。综合效果来看,文中探讨的布局可为充气飞机的设计提供一个新思路。  相似文献   

8.
锥导乘波构型设计、优化与分析   总被引:3,自引:2,他引:3       下载免费PDF全文
乘波构型是高超声速飞行器高升阻比气动布局设计的参考外形之一,设计中需要综合考虑升阻比、容积率和容积等要求。在锥导乘波构型参数化设计的基础上,采用工程估算和计算流体力学相结合的方法,通过正交试验设计分析了不同参数对目标影响的敏感性,合理选择设计参数优化区间,应用改进的多目标遗传算法对乘波构型进行了优化设计,针对优化外形开展了气动性能的数值模拟研究,并在高超声速炮风洞中完成了缩比模型的验证性实验。结果表明:优化设计外形具有良好的升阻比,且在一定攻角范围内升阻比较高,数值模拟和实验分析基本吻合。研究结果可为高超声速滑翔式飞行器的设计提供参考。  相似文献   

9.
刘振侠  肖洪 《航空学报》2009,30(3):411-421
综合升力体和乘波构型的气动性能优势,发展了一种高超声速飞行器前体气动构型的设计方法。运用该方法参考某高超声速飞行器气动布局方案,设计了一种高超声速飞行器气动布局。对该类高超声速气动布局进行了数值模拟、优化设计和试验研究;并研究了该类气动布局在高空飞行时,稀薄气体效应对气动性能的影响。数值模拟结果表明:构型前体预压缩面能够将高压气体封闭在构型下表面,实现了乘波构型的设计概念;优化设计结果表明,对于该构型宽展比应在0.4~0.6之间,通过优化升阻比至少有3%~5%的提高余地。对DSMC算法的碰撞模型和有效碰撞次数进行了改进,发展了临近空间飞行器气动性能模拟软件。研究结果表明,在临近空间区域,该类气动布局的升阻比特性略有下降,但仍旧保持了高升阻比的气动优势。  相似文献   

10.
为提升高超声速飞行器的升阻比,一种重要设计思想是让飞行器各组件的激波、膨胀波产生有利的相互作用,获得增升、减阻的效果。基于上述设计思想的高升阻比构型通常根据无黏二维/轴对称流场的激波-膨胀波关系设计。由于三维效应与空气黏性的影响,其实际性能相比理想设计性能往往存在较明显的退化。针对上述问题,提出流场波系引导的优化设计方法。不同于以气动性能指标为目标的传统优化方法,该方法以设计流场的波系形态为目标引导几何参数的优化方向。设计方法在一种主翼、上翼产生有利干扰的三维消波翼的设计中得到应用验证。通过将优化构型的流场、气动性能与根据二维无黏方法设计的初始构型对比,证明了优化设计方法的有效性。通过与菱形翼对比,验证了消波翼在设计工况下相比于常规构型的升阻比优势。  相似文献   

11.
为解决某型飞翼布局无人机(UAV)带动力构型风洞试验最大升阻比相对无动力状态大幅下降的问题,采用计算流体动力学(CFD)方法对无人机无动力与带动力构型进行了数值模拟,数值模拟结果分别与无动力以及带动力风洞试验数据吻合良好,在此基础上深入研究了螺旋桨安装效应对无人机气动特性的影响。结果表明:推力螺旋桨与机身之间气动干扰产生的低压区致使阻力增加,从而导致飞机最大升阻比相比无动力状态下降了30.7%。针对无人机在推力螺旋桨影响下出现的最大升阻比下降问题,采用增大螺旋桨与机身之间距离的方法可以有效地消除机身后部出现的低压区,减小了阻力,提升了无人机最大升阻比。桨毂拉长方案在8°和9°迎角下最大升阻比分别提升了17.3%和15.4%。  相似文献   

12.
S弯进气道优化设计及分析   总被引:2,自引:2,他引:2       下载免费PDF全文
甘文彪  周洲  许晓平  王睿  张乐 《推进技术》2014,35(10):1317-1324
为改进隐身飞行器推进系统的气动性能,针对S弯进气道开展了设计和分析。基于数值模拟方法、代理模型和遗传算法构建了一套自动优化方法。在优化设计过程中,结合参数化建模、网格自动生成和改进(SST)湍流模型求解,应用优化方法对飞行器进行了多目标设计,得到了进气道的优化推荐构型。应用尺度自适应模拟(SAS)方法对优化进气道气动性能进行了全面和细致的分析。研究结果表明:SAS方法可以较好地模拟S弯进气道的流动,优化设计能够极大地改进S弯进气道的气动性能;相比原始设计,优化进气道设计点的总压畸变指数降低了16.3%,总压恢复系数提高了1.1%。  相似文献   

13.
减小配平损失对于提高飞翼布局升阻比和提升飞行控制能力具有重要意义,因此基于离散伴随优化方法研究静稳定裕度对跨音速飞翼布局减阻优化的影响,分别开展10%,0%,-10% 三种静稳定性设计工况的优化研究。采用自由变形(FFD)方法对非结构表面网格进行参数化,以FFD 控制点为设计变量,通过求解流场和伴随方程得到灵敏度信息;采用序列二次规划SQP 算法获得控制点位移的梯度,然后经过多轮迭代得到优化构型。结果表明:在几何厚度和力矩配平的约束下,离散伴随优化方法可以显著提升飞翼布局的最大升阻比,三种工况下最大升阻比提高都在8% 以上;随着静稳定性裕度减小,定升力系数优化的巡航升阻比增量有所减小,当静稳定裕度为10% 时巡航升阻比提高了5.08%。  相似文献   

14.
以最大升阻比为优化目标,在锥型流场中优化设计出乘波布局,并考虑高超声速飞行器的防热需求,对乘波布局进行钝化设计,利用数值模拟和风洞实验两种手段,研究钝化前缘乘波布局的气动特性.结果表明:在一定钝化半径内,随着钝化半径的增加,乘波构型的升力特性变化仅为2%,但阻力特性增加近3倍,升阻比降低了将近50%.尽管如此,为了钝化乘波布局,仍维持了较高的升阻比,升阻比为3左右.同时,以二维顶压式进气道为基础,在多级楔锥组合体流场中,设计出满足超燃发动机进气要求的乘波前体/进气道一体化构型,并进行前缘钝化设计.针对一体化构型进行了数值验证,结果表明:此类一体化构型升阻比大于2.6,同时发动机总压恢系复数保持在40%左右,满足进气道的要求.   相似文献   

15.
宽速域高超声速飞行器是航空航天领域新的战略制高点,其飞行速域与空域极大化特点导致亚/跨/超/高超声速气动性能难以兼顾。为了缓解高低速气动设计的矛盾,以典型宽速域乘波-机翼布局为研究对象,结合基于代理模型的全局优化方法和基于伴随梯度的局部优化方法,对该宽速域构型的布局参数和剖面形状进行了从全局到局部的多目标分步优化。结果表明,在约束亚声速升力系数、高超声速阻力系数的情况下,基于代理模型的布局参数优化方法能够在维持高超声速气动性能的同时,将亚声速的升阻比提升9.5%。进一步选取布局参数优化结果 Pareto面上亚声速气动特性最优的构型,利用基于伴随梯度的优化方法,对机翼剖面进行梯度优化。优化结果表明,梯度优化能够有效地改善飞行器亚/高超声速状态下的阻力特性,并将翼型在几何上优化为兼顾亚/高超声速气动特性的双S翼型。通过上述从布局参数到剖面参数的优化,乘波-机翼构型的亚声速升阻比相比初始构型提升了12.4%,高超声速升阻比相比原始构型提升了6.2%。  相似文献   

16.
张卫红  郭文杰  朱继宏 《航空学报》2015,36(8):2662-2669
基于多组件结构系统整体式拓扑布局优化设计方法,研究了同时含有部件布局、组件布局、主结构框架构型和部件结构构型4类设计变量的复杂系统协同优化设计问题,是整体式拓扑布局优化设计面向复杂飞行器结构系统设计的拓展。采用多点约束(MPC)模拟组件、部件及支撑结构之间的刚性连接,采用有限包络圆方法(FCM)解决组件之间、组件与设计域边界之间的几何干涉问题。通过整体式拓扑布局的刚度优化设计,部件和组件均可以获得优化的布局位置,同时主结构框架构型和部件结构构型获得优化的结构样式,充分体现了整体式拓扑布局优化设计方法应用于复杂结构系统设计的能力。  相似文献   

17.
考虑螺旋桨滑流影响的机翼气动优化设计   总被引:4,自引:1,他引:4  
涡桨飞机的机翼、短舱等部件在滑流作用下周围的流场特性与无滑流状态下截然不同。所以,应该在涡桨飞机的机翼气动设计过程中考虑螺旋桨滑流的影响,从而使得机翼在真实飞行时滑流作用下表现出更好的气动特性。采用基于雷诺平均Navier-Stokes方程的多重参考坐标系(MRF)方法对螺旋桨滑流进行高精度准定常数值模拟,通过自由变形(FFD)技术实现螺旋桨飞机机翼的参数化构建,应用径向基函数(RBF)插值的动网格技术进行网格自动生成,获得样本机翼在滑流影响下的气动数据后,建立目标函数和状态函数的Kriging代理模型,结合随机权重粒子群优化(PSO)算法、Kriging代理模型和对应的EI(Expected Improvement)函数加点准则进行加样本点以及代理模型重建,从而建立滑流影响下机翼气动优化设计系统。使用该系统对某型螺旋桨飞机进行了滑流影响下的优化设计,结果表明,优化后的构型机翼和短舱在巡航状态下减阻达3.98counts,升阻比提高了3.325%。因此,建立的考虑滑流影响下的机翼优化设计方法是可行的。  相似文献   

18.
螺旋桨/机翼耦合下的目标螺旋桨滑流设计   总被引:1,自引:1,他引:0  
针对分布式电推进(DEP)构型等具有多螺旋桨特征的飞行器,发展了通过优化螺旋桨滑流来达到提高机翼升阻比的方法。提出了一种可以获得目标诱导速度分布的螺旋桨设计方法,基于面元法发展了一套可以快速计算螺旋桨机翼干扰的气动程序Prop-wing,基于Kriging代理模型建立了一套高效的优化方法获得最优的螺旋桨诱导速度分布提高机翼升阻比。优化结果显示当拉力保持相同时,螺旋桨桨毂附近的轴向诱导速度越大,下游机翼的升阻比越大。在不对螺旋桨功率进行限制时,优化后的螺旋桨使得下游的翼段阻力相比较安装最小能量损失设计的螺旋桨的翼段减少了1875%,而翼段升阻比提升达到了2563%,当优化螺旋桨功率被限制后,翼段升阻比提升为962%。虽然升阻比的提升需要付出螺旋桨效率下降的代价,但是研究还是给分布式动力滑流的利用提供了一种思路。   相似文献   

19.
针对跨声速客机气动/结构一体化设计问题,建立了考虑静气动弹性影响的气动/结构一体化优化设计方法,并针对现代跨声速民用客机开展了气动/结构一体化设计研究。数值评估选择全速势方程加附面层修正,气弹分析采用基于RBF插值技术的松耦合分析方法,优化方法使用改进的微分进化算法。通过对CRM和DLR-F6标模进行计算并与实验数据对比,验证了采用的气动数值评估手段和静气动弹性分析方法可靠性。利用建立的优化设计方法对跨声速客机机翼进行了分别以扭转角分布和剖面翼型为设计变量的考虑静气动弹性影响的气动/结构一体化设计,航程分别提高了5.63%和3.05%。航程的提高主要得益于机翼的载荷分布和结构厚度分布的改变,以扭转角分布为设计变量的优化设计以2.56%的结构重量损失获得了6.53%的升阻比的提高,以剖面翼型外形为设计变量的优化重量减小了3.56%同时升阻比提高了1.53%。  相似文献   

20.
针对临近空间和火星飞行器的螺旋桨通常面临的高亚声速、低雷诺数的特殊气动问题,首先,结合经过验证的基于■转捩模型的RANS数值模拟方法,并基于代理模型建立了高亚声速、低雷诺数气动优化设计框架。然后,针对临近空间螺旋桨翼型,在设计工况点(Ma=0.77,Re=1×105)开展了以改善升阻比为目标的气动优化设计。结果表明,优化翼型较原始低速翼型升阻比在设计点附近大幅提升,气动性能得到显著提高。研究结果可为临近空间和火星飞行器的气动设计提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号