首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landis GA 《Acta Astronautica》2004,55(12):985-990
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.  相似文献   

2.
《Acta Astronautica》2007,60(4-7):512-517
The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.  相似文献   

3.
At the time of the Apollo Programme, a first human mission to Mars was proposed as early as 1984 with the argument that the higher costs of human exploration would be more than justified by the increased effectiveness of human explorers. This was based on the Apollo experience, where "ground truth" measurements and sampling provided the basis for subsequent unmanned exploration of the Solar System. A human Mars mission is now not seen until 2030, at the end of a series of increasingly sophisticated unmanned probes. Each robot mission not only teaches us something about Mars, but also through experience increases our capabilities for the unmanned exploration of that planet. As a consequence, what a human mission would have to do becomes progressively more demanding. Any extended plan for the human exploration of Space will tend to be overtaken by advances in technology, and if this is not factored into the scenario the proposals will become progressively unrealistic.  相似文献   

4.
彭坤  杨雷 《宇航学报》2018,39(5):471-481
为提高空间站利用率,降低载人登月任务成本,有效开发地月空间,研究了基于地月空间不同轨道空间站的载人登月飞行模式。首先对比直接往返登月飞行模式,对基于空间站的载人登月飞行模式进行任务分析,通过空间站将载人登月任务解耦为载人天地往返任务和登月任务两部分;其次通过轨道设计和稳定性分析提出考虑登月任务需求的地月间空间站可运行轨道和停泊点;最后建立一套飞行模式评价模型,从速度增量需求、飞行时间、空间环境、登月任务窗口、测控条件、交会对接技术难度、后续任务支持性和任务可靠性方面对6种不同位置空间站的登月飞行模式进行分析和定量评价。评价结果表明基于L2点Halo轨道空间站的载人登月飞行模式为更优飞行模式。  相似文献   

5.
Alex Ellery   《Space Policy》2003,19(2):87-91
Every few years, the eternally resurgent question of whether humans or robots should be adopted for space exploration is dusted off, with arguments on both sides leading nowhere. I argue that this debate is misplaced—there is a well-defined distribution of tasks across humans and the machine, and this distribution is of an evolutionary nature. This article uses a variety of examples to illustrate where robotic capabilities are most appropriate and where human attributes cannot be dispensed with. It further suggests that, even as robotics and artificial intelligence are becoming more sophisticated, they will not be able to deal with ‘thinking-on-one's-feet’ tasks that require generalisations from past experience. Given the current and perceived status of robotics research, I submit that there will be a critical role for humans in space for the foreseeable future.  相似文献   

6.
Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.  相似文献   

7.
Michael J. Rycroft   《Space Policy》2006,22(3):158-161
This paper addresses, with examples, the essential need to devise important scientific research questions in order to set the objectives of space missions. However, the crucial objective of the human race is to survive the numerous hazards, both natural and anthropogenic, which may be expected to occur on Earth during the 21st century. With some experts believing that human civilisation may not survive to the end of the century, the main goals for space exploration should first be the preservation of planet Earth as a human habitat and, second, for human beings to settle in another haven, e.g. to colonise Mars. Treating this as an insurance policy, the annual premium for which could be around $16 billion, a globally cooperative plan should now be prepared and agreed. The fundamental message of this article echoes Zubrin's belief that, in order to survive, humanity must become a spacefaring species.  相似文献   

8.
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine.  相似文献   

9.
《Space Policy》2014,30(3):149-155
The Global Exploration Roadmap reflects the collaborative effort of twelve space agencies to define a long-term human space exploration strategy which provides substantial benefits for improving the quality of life on Earth and is implementable and sustainable. Such a strategy is a necessary precondition to the government investments required to enable the challenging and rewarding missions that extend human presence into the solar system. The article introduces the international strategy and elaborates on NASA's leadership role in shaping that strategy. The publication of the roadmap, a reflection of the space landscape and multilateral agency-level dialog over the last four years, allows NASA to demonstrate its commitment to leading a long-term space exploration endeavor that delivers benefits, maintains strategic human spaceflight capabilities and expands human presence in space, with human missions to the surface of Mars as a driving goal. The road mapping process has clearly demonstrated the complementary interests of the participants and the potential benefits that can be gained through cooperation among nations to achieve a common goal. The present US human spaceflight policy is examined and it is shown that the establishment of a sustainable global space exploration strategy is fully consistent with that policy.  相似文献   

10.
延迟/中断容忍网络(DTN)采用一种新的端到端的覆盖层网络体系结构,是实现行星际因特网(IPN)的一种重要技术途径。文章首先论述了DTN应用于航天的几种网络协议的特点,包括束协议、利克里德传输协议(LTP)、空间数据系统咨询委员会文件传输协议(CFDP)和Saratoga协议,并分析了DTN路由算法的特点和DTN网络软件的实现,然后总结了NASA在遥感、空间站、中继通信和深空探测等任务情景下进行的DTN飞行验证试验的技术特点。针对我国未来天基综合信息网建设的需求,提出了DTN技术在体系结构、汇聚层协议、路由算法和网关节点设计方面值得关注的问题。  相似文献   

11.
Human space exploration since Apollo appears to lack an overall context. There has been an overall context for the world's space efforts. But it is an unofficial one and it is outmoded, because it was based on a false assumption. This is the space exploration plan articulated by Von Braun in the 1950s and restated as the Integrated Space Program - 1970–1990, whose principal aim is to send humans to explore Mars. The critical underlying assumption of this plan was that Mars is a planet much like Earth, with an active biosphere. This Program has persisted nearly two decades after this underlying assumption has been shown to be false. There is a competing context re-emerging for human space exploration and development which is better fitted to the needs of human society in the post-Cold War era than the Mars program embraced by NASA and, to a large extent, the USSR during the period of US-Russian competition. The original space program uses the resources of free space and provides an economic rationale for human space activity.  相似文献   

12.
The human exploration of multiple deep space destinations (e.g. Cis-Lunar, NEAs), in view of the final challenge of sending astronauts to Mars, represents a current and consistent study domain especially in terms of its possible scenarios and mission architectures assessments, as proved by the numerous on-going activities about this topic and moreover by the global exploration roadmap. After exploring and analysing different possible solutions to identify the most flexible path, a detailed characterisation of several Design Reference Missions (DRMs) represents a necessity in order to evaluate the feasibility and affordability of deep space exploration missions, specifically in terms of enabling technological capabilities.The study presented in this paper was aimed at defining an evolutionary scenario for deep space exploration in the next 30 years with the final goal of sending astronauts on the surface of Mars by the end of 2030 decade. Different destinations were considered as targets to build the human exploration scenario, with particular attention to Earth–Moon Lagrangian points, NEA and Moon. For all the destinations selected as part of the exploration scenario, the assessment and characterisation of the relative Design Reference Missions were performed. Specifically they were defined in terms of strategies, architectures and mission elements. All the analyses were based on a pure technical approach with the objective of evaluating the feasibility of a long term strategy for capabilities achievement and technological development to enable future space exploration.This paper describes the process that was followed within the study, focusing on the adopted methodology, and reports the major obtained results, in terms of scenario and mission analysis.  相似文献   

13.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

14.
The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Space Exploration Vehicle (SEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA's integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either 0, 1, or 2 SEVs; 3 or 4 crewmembers; 1 of 2 different communications bandwidths; and a 50-second each-way communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a remote Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 50-second each-way communication latency to the field. Crews were composed of astronauts and professional field geologists. Teams of Mission Operations and Science experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, and Science teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one SEV and by including 4 versus 3 crewmembers in the NEA exploration architecture as measured by increased scientific data quality, EVA exploration time, capability assessment ratings, and consensus acceptability ratings provided by Crew, Mission Operations, and Science teams. A combination of text and voice was used to effectively communicate over the communications latency, and increased communication bandwidth yielded a small but practically significant improvement in overall acceptability as rated by the Science team, although the impact of bandwidth on scientific strategic planning and public outreach was not assessed. No effect of increased bandwidth was observed with respect to Crew or Mission Operations team ratings of overall acceptability.  相似文献   

15.
Why we need a space elevator   总被引:2,自引:1,他引:1  
The goals of and vision for development of a space elevator have been discussed repeatedly. However, why we should develop one has been glossed over. This paper will focus upon the major issue—why build a space elevator infrastructure? It considers why we need a space elevator, what missions it would enable and how far it would reduce costs. There is no doubt that some major missions would be enhanced or significantly enabled by a space elevator infrastructure. Global communications, energy, monitoring of the Earth, global/national security, planetary defense, and exploration beyond low-Earth orbit are a few examples. In the end, if we are serious about extending space development and avoiding limitations on the human spirit, the reason we should build a space elevator is because we must!  相似文献   

16.
《Space Policy》2014,30(3):178-182
The space sector gathers together people from a variety of fields who work in the industry on different levels and with different expertise. What is often forgotten is the impact and role of the current young generation. Their engagement is of great importance as undeniably today's young ‘space generation’ will be defining the direction of future space exploration.Today's vision of future human and robotic space exploration has been set out in the Global Exploration Roadmap (GER). This focuses on sustainable, affordable and productive long-term goals. The strategy begins with the International Space Station (ISS) and then expands human presence into the solar system, including a human mission to Mars.This paper presents a general overview of the role of today's youth within the space exploration sector and the challenges to overcome. To complete this perspective, we present results from a survey made among students and young professionals about their levels of awareness of the GER. The respondents presented their opinion about current aspects of the GER and prioritised the GER's objectives. It is hoped that the paper will bring a new perspective into the GER and a contribution to the current GER strategy.  相似文献   

17.
The links between Earth and space exploration occur across a broad spectrum, from the use of satellite technology to support environmental monitoring and habitat protection to the study of extreme environments on Earth to prepare for the exploration of other planets. Taking the view that Earth and space exploration are part of a mutually beneficial continuum is in contrast to the more traditionally segregated view of these areas of activity. In its most polarized manifestation, space exploration is regarded as a waste of money, distracting from solving problems here at home, while environmental research is seen to be introspective, distracting from expansive visions of exploring the frontier of space. The Earth and Space Foundation was established in 1994 to help further mutually beneficial links by funding innovative field projects around the world that work at the broad interface between environmental and space sciences, thus encouraging the two communities to work together to solve the challenges facing society. This paper describes the work of the foundation and the philosophy behind its programmes.  相似文献   

18.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

19.
文章简单回顾了中国深空探测已走过的历程和正在进行的项目,展望了今后的发展;分析了深空探测器及其有效栽荷对光电技术的需求;重点对中国已发射的月球探测器"嫦娥一号"、"嫦娥二号"中应用的光电技术和获取的成果,正在研制的"嫦娥三号"探测器中所应用的光电技术,月球探测三期和今后可能发展的深空探测项目中预计采用的光电技术的研制工...  相似文献   

20.
Mars is a compelling astrobiological target, and a human mission would provide an opportunity to collect immense amounts of scientific data. Exploration alone, however, cannot justify the increased risk. Instead, three factors drive a human mission: economics, education, and exploration. A human mission has a unique potential to inspire the next generation of young people to enter critically needed science and engineering disciplines. A mission is economically feasible, and the research and development program put in place for a human mission would propel growth in related high-technology industries. The main hurdles are human physiological responses to 1–2 years of radiation and microgravity exposure. However, enabling technologies are sufficiently mature in these areas that they can be developed within a few decade timescale. Hence, the decision of whether or not to undertake a human mission to Mars is a political decision, and thus, educational and economic benefits are the crucial factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号