首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
DYH—100电液伺服阀用于我所自行设计、制造的SKX—3000三坐标数控铣床电液伺服驱动系统中,其力矩马达的设计参考了美国MOOG公司的伺服阀和北京机床研究所的QDY_1伺服阀中的力矩马达。与MOOG阀中的力矩马达相比,结构有所简化(反馈杆和挡板合成一件,材料为铍青铜),参数也有所改变(线圈改为2400匝,额定电流改为30毫安),工作原理仍一致。  相似文献   

2.
研制了一种基于液压式微位移放大机构的超磁致伸缩直驱式电液伺服阀,在保证较大体积流量的前提下,提高了直驱式电液伺服阀的频响.采用弹性力学理论、有限元和计算流体力学(CFD)方法对直驱式电液伺服阀进行了结构设计和分析,并制作了超磁致伸缩直驱阀样机,在AMESim下建立其磁-机-液耦合模型.仿真和试验表明:所设计的超磁致伸缩直驱阀的频响超过100Hz和系统油压21MPa下的负载体积流量达到30L/min.   相似文献   

3.
1.三级电液伺服阀的结构及工作原理:三级电液伺服阀是一种新形式的宽频带大流量伺服阀。由于它在大流量情况下,具有比同等流量的标准的二级阀高得多的动特性,因  相似文献   

4.
一种轮盘式特种调节阀流量特性的修正算法   总被引:8,自引:3,他引:5  
针对引进的俄罗斯轮盘式特种调节阀(简称特种阀)用于高空模拟试车台(简称高空台)出现的流量特性模型误差太大(最大误差达15%),导致特种阀数学模型精度太低,难以满足高空台伺服调控系统设计要求这一问题,提出一种特种阀流量特性的间接修正方法。借用若干次试验数据,并对其进行筛选、计算分析、对比等处理,获得去数据噪声后的特种阀流量特性的对角分布稀疏数据表。在此基础上,分5类情况按数据特征进行特种阀流量特性系数修正。建立基于修正的特种阀流量特性的数学模型,并将仿真结果与试验数据对比,特种阀流量稳态误差在5%以内。  相似文献   

5.
本文首先对伺服阀双故障机理进行了分析,完成了地面故障复现.然后通过磁通量变化、压力脉动等理论公式,推导出感生电动势函数.分析表明,压力脉动会引起衔铁组件振动切割线圈内部的磁通,产生感生电动势,可通过调节伺服阀内部参数改变感生电动势大小.最后通过降低伺服阀极靴面积、充磁量等方式减小电动势并完成了试验验证.  相似文献   

6.
设计了一种用于航空发动机他机领先试飞的引气负载系统,详细介绍了该系统的总体布局、技术要求、工作原理和具体实施方案.整个系统主要由引气控制系统、引气流量测量控制系统、引气流量调节装置及限流文氏管等组成,通过测量控制系统,控制压力调节/关断阀和引气流量调节阀,测量、显示和记录流量测量装置获取的参数.地面试验和飞行试验表明,...  相似文献   

7.
分析了矩形及国影节流孔的流量特性。介绍了伺服阀制造过程中所需各种流量测试时的油路连接和流量关系式,并对差压式流量计的特点及在伺服阀制造工艺中的实际应用作了叙述。  相似文献   

8.
针对射流管伺服阀在电-磁-力-位移转换过程中的响应滞后问题,建立了考虑电涡流效应的力矩电动机数学模型,获取了力矩电动机的频率特性。以某型射流管伺服阀为例,建立了考虑电涡流效应的射流管伺服阀数学模型,得到了主要性能参数对伺服阀频率特性的影响规律。结果表明:气隙长度、气隙磁导率的增加以及气隙有效面积的减小会导致伺服阀响应变慢,控制线圈匝数不影响伺服阀的频率特性,导磁材料电导率的减小能提高伺服阀的响应速度。对伺服阀进行试验研究,理论值和试验值之间的差值约为5%,验证了所建模型的正确性和有效性。  相似文献   

9.
喷嘴挡板式电液伺服阀是液压系统实现控制功能的常用元件,本文通过在某型号伺服阀产品工艺流程、关键零组件/工序工艺方法、工艺文件等方面进行超出传统方式的改进和试验,完成了其制造技术的创新性实践研究,优化了该类电液伺服阀生产模式,提升了生产效率和能力.  相似文献   

10.
褚渊博  袁朝辉  张颖 《航空学报》2015,36(5):1548-1555
射流管式伺服阀是一种典型的两级流量控制电液伺服阀,其喷嘴至接收器部位的流场最复杂,会因液压介质的污染而产生冲蚀磨损。以射流管式伺服阀为研究对象,将计算流体力学(CFD)理论与冲蚀磨损理论相结合,应用雷诺平均Navier-Stokes方程、标准k-ε两方程模型(液相)、离散相模型(DPM)(固相)和塑性材料冲蚀磨损模型,通过流体动力学软件FLUENT建立射流管式伺服阀喷嘴至接收器部位的可视化仿真模型,并进行了冲蚀磨损率的数值模拟和理论寿命的计算。研究结果表明:液压介质中的固体颗粒对射流管式伺服阀的冲蚀磨损主要集中于左右接收孔所夹中间内壁区域,磨损率最大值随喷嘴偏移量的增加而减小且此趋势左右对称。研究方法和结果对于射流管式伺服阀故障的定性分析、预测和理论寿命的定量计算具有重要参考价值。  相似文献   

11.
一、研制3Q-ⅡJ型高响应阀的目的电液伺服阀是自动控制系统中重要的控制元件。由于它具有结构简单、工作可靠,使用寿命长、输出功率大、精度高、响应快等特点,在航空、航天、航海、冶金、机械、化工等部门都得到广泛的应用。为了满足电液伺服系统对伺服阀提出的高精度,大流量、高响应的要求,我们抓住提高  相似文献   

12.
赵江波  王军政 《航空学报》2009,30(10):1918-1922
为准确测量动压反馈伺服阀的反馈网络时间常数τ,提出一种用频率扫描法来测量时间常数的方法。建立了动压反馈伺服阀的反馈压差与加载压差的传递函数,该传递函数是关于τ的表达式。据此,只要能获取该传递函数,就可以计算出时间常数的值。为此,设计了专门的测试装置,通过试验法获取该传递函数的幅频特性,从而间接计算出τ。测试装置由一个加载伺服阀为被测伺服阀提供幅值恒定、频率递增的交变负载,通过一个数字控制器实现加载压力幅值的恒定控制。试验测试表明,测试过程可行,结果准确可靠,能够满足实际要求。  相似文献   

13.
在大量工艺试验的基础上,对余度伺服作动器中MCV主控阀制造的核心技术进行了系统研究,总结出了一套完整的配套加工、重叠量配磨和流量特性检测和修整的技术方案,首次在国内实现了该项技术,并且实现了工程化生产。  相似文献   

14.
訚耀保  李长明 《航空学报》2015,36(11):3724-3733
针对负重合型气动伺服阀(PSV)零位特性设计缺少理论依据问题,根据单个节流口的气体质量流量公式建立起气动伺服阀滑阀级的数学模型,采用假设求证法分析了零位时气体流经上、下游节流口的流动状态与影响因素之间的关系。结果表明在不同供、排气压力比下,负重合量不均等系数小于0.5283的气动伺服阀有3种可能的零位流动状态,即上、下游节流口均为亚声速流动,或者均为声速流动,或者上游节流口为声速时下游节流口为亚声速流动;负重合量不均等系数不小于0.5283的气动伺服阀有两种可能的零位流动状态,即上、下游节流口均为亚声速流动,以及上游节流口为亚声速时下游节流口为声速流动。可知气动伺服阀的零位流动状态由负重合量不均等系数与供、排气压力比共同决定。以负重合量不均等系数分别为0.5、1、2的气动伺服阀为例进行了计算和实验验证,实验结果与理论分析相吻合。  相似文献   

15.
(一)概述电液伺服阀是电液伺服系统中一个重要元件。它将微弱的电气讯号(mA)转变成大功率的液压能(流量、压力)输出,即起转换作用又起放大作用。电液伺服阀在自动控制系统中,可用来进行位置控制、速度控制、加速度控制、力的控制和压力控制。其特点是精  相似文献   

16.
三吨电液振动台工作原理如图1所示。控制信号(由信号发生器发出)经过压控放大器,把信号输给功放(放大倍数K_3=3),功放用放大了的电流信号来控制伺服阀的开口,电液伺服阀的开口大小决定了供给油缸活塞运动的流量多少,流量的多少就决定了活塞的运动大小(电液伺服阀是把小的电信号放大成需要的大的液流起电液转换和功率放大作用)。这样振动台活塞的运动就由信号发生器发出的信号来控制。  相似文献   

17.
在液压伺服控制中,经常使用非对称施力机构。但是,一般文献中均未给出单腔控制时非对称施力机构服阀静态工作点及其参数的计算方法。这给单控控制的伺服系统的设计带来了困难。对此,笔者在理论推导的基础上,给出了单腔控制的非对称施力机构伺服阀静态工作点、流量增益及流量-压力系数的计算方法。  相似文献   

18.
本文以 YMT-S型三轴飞行模拟转台为例,对带惯性负载的阀控马达随动系统的非线性进行了模拟计算机仿真。时间比例尺取 m=100。仿真的液压元件为:3 F 电液伺服阀和 YCM-27径向柱塞式液压伺服马达。通过模拟计算机仿真,观察了伺服阀的死区、磁滞与摩擦造成的滞环,流量与压力间的平方根律造成的非线性增益,阻尼非线性:伺服马达的库仑摩擦;转台刚度以及传动间隙对系统的影响。该系统结构如示意图1:本文第一部分为结构图及模拟计算机图的建立;第二部分为系统仿真结果与分析。  相似文献   

19.
为探索轻质化燃油系统结构,基于电调燃油变量泵的航空发动机转速控制系统,构建了柱塞泵斜盘位置电液伺服控制系统,油泵出口燃油直接输入电液伺服阀;建立了电液伺服阀线性化模型。通过数字仿真,研究了电液伺服阀工作特性,并得到了其适应性模型;在航空发动机特性半物理试验系统上,对斜盘位置电液伺服控制系统实物进行了验证试验,并与航空发动机模型一起构成了发动机转速闭环控制系统。结果表明:变输入压力的燃油电液伺服位置控制系统有效可行,变量泵工作稳定可靠,电液伺服阀模型能够准确反映实际工作状况;基于变参数PI控制算法的转速闭环控制初步取得成效。  相似文献   

20.
部标准《电液流量伺服阀通用技术条件》业经部批准,于1981年1月1日起实施.标准编号为HB5610-80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号