共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
采用标准K-ε两方程湍流模型对液体火箭发动机推力室再生冷却通道三维湍流流动与传热过程进行了数值预测,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,通过两种优化方案来改变推力室冷却通道的深宽比。方案一为保持冷却通道的深度及肋宽不变,通过改变推力室壁面通道个数来改变通道的深宽比,方案二为保持通道数目不变,通过增加或降低通道高度来改变通道的深宽比。以此计算在不同通道深宽比下推力室壁面的传热特性,并进行了优化分析。计算结果表明:存在着一个最佳冷却通道个数,使得推力室壁面再生冷却效果达到最佳;在相同质量流量下,降低通道高度能够强化推力室传热,但同时增加了进出口压差。 相似文献
3.
采用气固耦合算法对液体火箭发动机推力室再生冷却通道的流动与传热过程进行了三维湍流流动与传热数值模拟,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化。应用大涡模拟及标准k-ε双方程模型两种湍流模型分别进行数值模拟,详细揭示了再生冷却通道固体区和流体区内的速度场和温度场,并在不同的计算网格数目下对两种湍流模型的计算结果进行了对比。结果表明,在相同的网格条件下,标准k-ε双方程模型与实验数据的吻合精度比大涡模拟模型更好,且满足工程计算精度。随着网格数的增加,大涡模拟的计算精度逐渐得到改善。 相似文献
4.
5.
6.
新一代液氧 /烃类推进剂液体火箭发动机将采用高燃烧室压力方案 ,这时推力室冷却成为一项关键技术问题。本文构造了一个槽道式再生冷却通道几何尺寸的优化设计方法 ,其优化目标是使通过冷却通道的冷却剂的压力损失最小。典型的计算、实验表明 ,采用优化设计方法可使冷却压力损失减少 50 % ,即采用优化设计有利于高室压推力室冷却问题的解决。 相似文献
7.
液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算 总被引:2,自引:3,他引:2
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,冷却剂比热容及金属固体物性随着温度而变化。计算采用标准k-ε双方程湍流模型及气-固耦合算法。结果表明:推力室燃气侧壁面的温度和热流密度的最高点均发生在喉部附近,喉部横截面固体区域最大温度梯度靠近燃气,喉部附近氢气在垂直主流方向的截面上产生了二次流。气固耦合面最大热流密度及最大对流换热系数同样位于推力室喉部附近。 相似文献
8.
通道深宽比对液体火箭发动机推力室再生冷却的影响 总被引:1,自引:1,他引:1
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟, 冷却工质为氢气, 其密度、导热系数、动力粘度随着温度和压力而变化, 冷却剂比热容及金属固体物性随着温度而变化.计算采用标准k-ε两方程湍流模型及气-固耦合算法.保持再生冷却通道个数及冷却工质进口流量不变, 通过改变通道肋壁厚度来改变冷却通道深宽比, 研究不同深宽比对推力室壁面再生冷却效果的影响规律.计算结果表明:增加通道深宽比对推力室壁面能够起到强化传热的作用, 但同时也增加了冷却通道的进出口压差.这是由于冷却工质流速的增高, 从而提高了推力室传热系数.随着深宽比不断增加, 推力室再生冷却效果趋于饱和, 而冷却工质进出口压降则不断上升. 相似文献
9.
10.
11.
对大推力液体火箭发动机再生冷却推力室内部燃气、室壁和再生冷却剂进行了耦合传热数值计算.采用二维轴对称N-S方程描述推力室内部燃气的湍流流动与传热,对冷却剂流动采用简化的一维模型,通过室壁的偶合传热采用一维传热模型.N-S方程的求解采用贴体坐标系下的有限容积法,速度和压强的耦合采用可压缩的SIMPLE算法.湍流的模拟采用可压缩的标准κ-ε模型,辐射传热采用热流模型计算.研究表明,本文方法可较好地模拟燃气的二维流动,同时能快速计算壁面热流密度、壁温和冷却套温升,计算结果对大推力发动机推力室的设计具有一定的指导意义. 相似文献
12.
设计了单喷嘴气气喷注器容热式推力室,进行了0.92~6.1 MPa范围内7个燃烧室压力工况,共17次热试车;采用壁面测温方法获得推力室沿轴向方向的内壁热流分布,得到各室压工况下燃烧室内壁热流分布曲线,不同工况的热流曲线显示出相似的分布;并从中分离出对流传热热流,得到对流传热热流与室压的关系。为拓展范围,采用多组分湍流N-S方程描述推力室内燃烧流动,采用6组分9步反应模型来描述氢氧反应,反应速率由Arrhenius公式计算,进行了5~20 MPa更高室压范围内的燃烧内流场的数值模拟,并耦合计算了各工况燃气与室壁之间的传热,获得了与试验相同规律的结果。 相似文献
13.
液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅱ)数值方法与计算结果 总被引:3,自引:3,他引:3
对液体火箭发动机推力室发汗冷却传热过程的二维局部非热平衡模型进行了数值计算。计算中采用了正交曲线坐标系(贴体坐标),并计及了冷却剂(氢)的热物性参数随温度和压力的剧烈变化及固体壁沿轴向的导热。结果表明:推力室多孔壁面中靠近燃烧室的部分温度梯度很大;固体骨架与冷却剂的温度差异在推力室内壁面上最大;推力室多孔壁面材料导热系数的提高有利于降低壁面温度及温度梯度;随着冷却剂流量的增大,推力室壁中的最高温度明显下降;若设计合理,发汗冷却所需要的冷却剂的量只占总流量的2%左右。 相似文献
14.
To evaluate the structural failure risk of the regenerative cooling thrust chamber cylinder segment, a Finite Element Method(FEM) based on experimental data was developed. The methodology was validated and utilized to reveal the thermal response and the nonlinear deformation behavior of the cylinder segment phase by phase. The conclusions of the research are as follows:The 2 D heat flux distribution caused by the injector determines the uneven temperature distribution on the gas-side wall and le... 相似文献
15.
建立了单组元发动机推力室系统(包括结构部件如隔热框、催化床、喷管等)的传热模型。在此基础上,应用有限元数值计算的方法,将模型进行轴对称Delaunay非结构化网格剖分,并完成瞬态温度场的模拟计算,进行推力室在轨温度的数值仿真。结合计算结果分析了热回浸现象、催化床电加热效能以及外空间辐射换热等问题。最后指出,隔热框的防热设计和空间辐射散热有效地隔绝了热回浸对电磁阀和喷注器的不良影响,并论证了催化床的电热丝加热是保证催化床在工作前维持一定温度范围之内的可靠方法。 相似文献
16.
为了解结构参数对圆转矩形内喷管再生冷却换热的影响,设计了多个圆转矩形喷管,考虑了三种结构参数:转方位置、出口高宽比和出口圆角大小的影响。采用有限体积法求解三维可压缩的N-S方程对其内部流动和换热进行了数值模拟。湍流模型采用标准的k-ε双方程模型,壁面附近的流动和传热采用壁面函数法处理,速度与压力的耦合采用SIMPLE算法求解。结果表明:在型面一阶导数连续的情况下,转方位置对圆转矩形内喷管的换热影响不大;出口高宽比对圆转矩形内喷管的换热影响较大,出口高宽比不能太小,否则影响内喷管流场和换热;出口圆角大小影响内喷管周向上的温度分布,圆角太小造成周向温度分布不均匀。 相似文献