共查询到19条相似文献,搜索用时 0 毫秒
1.
The general structure of the heliospheric magnetic field is well known and has been extensively studied, mostly in the inner heliosphere, out to the orbit of Saturn. Beyond 10 AU, the Pioneer and now the Voyager spacecraft have provided a view of the outer heliosphere. Its structure is strongly affected by large-scale phenomena originating in the Sun’s activity, such as the pattern of fast and slow solar wind streams around solar minimum that lead to Corotating Interaction Regions, and the increased frequency and strength of Coronal Mass Ejections around solar maximum. The large current sheet that separates the dominant magnetic polarities in the heliospheric medium, the Heliospheric Current Sheet, provides a variable structure that evolves from a relatively simple geometry close to the solar equatorial plane to what is likely to be a highly complex and dynamic surface reaching to high heliolatitudes at high levels of solar activity. The magnetic field observed in a fluctuating, dynamical heliosheath differs considerably from that in a static heliosheath. In particular, the time between current-sheet crossings (sectors) is quite sensitive to the radial speed of the solar-wind termination shock. If an inwardly moving termination shock moves past an observer on a slowly moving spacecraft, the time between current-sheet crossings in the heliosheath becomes larger, and can become very large, for reasonably expected inward shock speeds. This effect may help to explain recent observations of the magnetic field from the Voyager 1 spacecraft, where, in the heliosheath, the magnetic field remained directed outward from the Sun for several months without a current-sheet crossing. The crossings finally resumed and now occur somewhat regularly. In addition, the magnetic fluctuations in the heliosheath are observed to be quite different from those in the supersonic upstream solar wind. 相似文献
2.
M. S. Potgieter 《Space Science Reviews》2013,176(1-4):165-176
The global modulation of galactic cosmic rays in the inner heliosphere is determined by four major mechanisms: convection, diffusion, particle drifts (gradient, curvature and current sheet drifts), and adiabatic energy losses. When these processes combine to produce modulation, the complexity increases significantly especially when one wants to describe how they evolve spatially in all three dimensions throughout the heliosphere, and with time, as a function of solar activity over at least 22 years. In this context also the global structure and features of the solar wind, the heliospheric magnetic field, the wavy current sheet, and of the heliosphere and its interface with the interstellar medium, play important roles. Space missions have contributed significantly to our knowledge during the past decade. In the inner heliosphere, Ulysses and several other missions have contributed to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated theories and numerical models to explain these observations, and to understand the underlying physics that determines galactic cosmic ray modulation at Earth. An overview is given of some of the observational and modeling highlights over the past decade. 相似文献
3.
André Balogh 《Space Science Reviews》2010,152(1-4):23-97
The nature and diversity of the magnetic properties of the planets have been investigated by a large number of space missions over the past 50 years. It is clear that without the magnetic field measurements that have been carried out in the vicinity of all the planets, the state of their interior and their evolution since their formation would not be understood even though questions remain about how the different planetary dynamos (in six of the eight planets) work. This paper describes the motivation for making magnetic field measurements, the instrumentation that has been used and many of the missions that carried out the pioneering observations. Emphasis is given to the historically important early missions even if the results from these have been in some cases bettered by later missions. 相似文献
4.
Variations of the geomagnetic field over past millennia can be determined from archeomagnetic data and paleomagnetic sediment records. The resolution and validity of any field reconstruction depends on the reliability of such indirect measurements of past field values. Considerable effort is invested to ensure that the magnetic minerals carrying the ancient magnetization are good, if not ideal, recorders of the magnetic field. This is achieved by performing a wide array of rock magnetic and microscopy investigations, many of which are outlined here. In addition to data quality, the spatial and temporal distributions of archeomagnetic and sediment records play a significant role in the accuracy of past field reconstruction. Global field reconstructions enable studies of dynamic processes in Earth’s core. They rely on data compilations which ideally include information about the quality of a measurement and provide a useful archive for selecting data with the best characteristics. There is, however, a trade off between the total number of reliable data and the geographic or temporal coverage. In this review we describe the various types of paleomagnetic recorders, and the kind of measurements that are performed to gather reliable geomagnetic field information. We show which modeling strategies are most suitable, and the main features of the field that can be derived from the resulting models. Finally, we discuss prospects for progress in this kind of research. 相似文献
5.
The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede. 相似文献
6.
We review recent advances in the field of galactic cosmic ray transport in the distant heliosphere. The advent of global MHD models brought about a better understanding of the three-dimensional structure of the interface between the solar system and the surrounding interstellar space, and of the magnetic field topology in the outer heliosphere. These results stimulated a development of galactic cosmic ray transport models taking the advantage of the available detailed plasma backgrounds and of the new Voyager results from the heliosheath. It emerges that the heliosheath plays a prominent role in the process of modulation and filtration of low-energy galactic ions and electrons. The heliosheath stores particles for a duration of several years thus acting as a large reservoir of galactic cosmic rays. Cosmic-ray trajectories, transit times, and entry locations across the heliopause are discussed. When compared to observations model calculations of low energy electrons show almost no radial gradient up to the termination shock, irrespective of solar activity, but a large gradient in the inner heliosheath. Intensities are however sensitive to heliospheric conditions such as the location of the heliopause and shock. In contrast, high energy proton observations by both the Voyager spacecraft show a clear solar cycle dependence with intensities also increasing with increasing distance. By comparing these observations to model calculations we can establish whether our current understanding of long-term modulation result in computed intensities compatible to observations. 相似文献
7.
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and larger scales, making the Sun essentially a multi-scale object. Convection and overshooting give the photosphere its face but also act as drivers for the layers above, namely the chromosphere and corona. The magnetic field configuration effectively couples the atmospheric layers on a multitude of spatial scales, for instance in the form of loops that are anchored in the convection zone and continue through the atmosphere up into the chromosphere and corona. The magnetic field is also an important structuring agent for the small, granulation-size scales, although (hydrodynamic) shock waves also play an important role—especially in the internetwork atmosphere where mostly weak fields prevail. Based on recent results from observations and numerical simulations, we attempt to present a comprehensive picture of the atmosphere of the quiet Sun as a highly intermittent and dynamic system. 相似文献
8.
Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ~60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model. 相似文献
9.
Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led to the latest Swarm constellation concept. We conclude with some considerations about future concepts that could possibly be implemented to ensure the much needed continuity of LEO space magnetometry, possibly with enhanced scientific return, by the time the Swarm mission ends. 相似文献
10.
11.
The geomagnetic signal contains an enormous temporal range—from geomagnetic jerks on time scales of less than a year to the evolution of Earth’s dipole moment over billions of years. This review compares observations and numerical models of the long-term range of that signal, for periods much larger than the typical overturn time of Earth’s core. On time scales of 105–109 years, the geomagnetic field reveals the control of mantle thermodynamic conditions on core dynamics. We first briefly describe the general formalism of numerical dynamo simulations and available paleomagnetic data sets that provide insight into paleofield behavior. Models for the morphology of the time-averaged geomagnetic field over the last 5 million years are presented, with emphasis on the possible departures from the geocentric axial dipole hypothesis and interpretations in terms of core dynamics. We discuss the power spectrum of the dipole moment, as it is a well-constrained aspect of the geomagnetic field on the million year time scale. We then summarize paleosecular variation and intensity over the past 200 million years, with emphasis on the possible dynamical causes for the occurrence of superchrons. Finally, we highlight the geological evolution of the geodynamo in light of the oldest paleomagnetic records available. A summary is given in the form of a tentative classification of well-constrained observations and robust numerical modeling results. 相似文献
12.
With the recent advancements in interplanetary coronal mass ejection (ICME) imaging it is necessary to understand how heliospheric images may be interpreted, particularly at large elongation angles. Of crucial importance is how the current methods used for coronal mass ejection measurement in coronagraph images must be changed to account for the large elongations involved in the heliosphere. We present results comparing a new model of interplanetary disturbances with heliospheric image data, from the Solar Mass Ejection Imager. A database containing a range of ICMEs simulated with varying parameters describing its topology, orientation, location and speed was produced and compared with two ICMEs observed in February and December 2004. We identify the simulated ICME that best matches the data, and use the parameters required to identify their three-dimensional leading-edge structure, orientation and kinematics. By constant comparison with the data we are able to keep track of small changes to the ICME topology and kinematic properties, thus for the first time are able to monitor how the dynamic interaction between the ICME and the interplanetary medium affects ICME evolution. This is the second part of a series of three papers, where the theory behind the model is presented in an accompanying paper and the physical implications are discussed in the third part. The first part considers the effects of Thomson scattering across the entire span of the disturbance and includes its apparent geometry at large elongations. We find that the model converges reliably to a solution for both events, although we identify four separate structures during the December period. Comparing the 3-D trajectory and source location with known associated features identified with other spacecraft, we find a remarkable agreement between the model and data. We conclude with a brief discussion of the physical implications of the model. 相似文献
13.
Hiroshi Matsui John C. Foster Donald L. Carpenter Iannis Dandouras Fabien Darrouzet Johan De Keyser Dennis L. Gallagher Jerry Goldstein Pamela A. Puhl-Quinn Claire Vallat 《Space Science Reviews》2009,145(1-2):107-135
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time. 相似文献
14.
Space Science Reviews - 相似文献
15.
16.
Paul S. Wesson 《Space Science Reviews》2010,156(1-4):239-252
Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of damaged biological molecules might serve to seed new life (necropanspermia). 相似文献
17.
Space Science Reviews - 相似文献
18.
Comets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed. ESA’s recent Rosetta mission to Jupiter family comet 67P/Churyumov–Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In this paper we review our current knowledge on the isotopic compositions of H, C, N, O, Si, S, Ar, and Xe in primitive Solar System materials studied in terrestrial laboratories and how the Rosetta data acquired with the ROSINA (Rosetta Orbiter Sensor for Ion and Neutral Analysis) and COSIMA (COmetary Secondary Ion Mass Analyzer) mass spectrometer fit into this picture. The H, Si, S, and Xe isotope data of comet 67P/CG suggest that this comet might be particularly primitive and might have preserved large amounts of unprocessed presolar matter. We address the question whether the refractory Si component of 67P/CG contains a presolar isotopic fingerprint from a nearby Type II supernova (SN) and discuss to which extent C and O isotope anomalies originating from presolar grains should be observable in dust from 67P/CG. Finally, we explore whether the isotopic fingerprint of a potential late SN contribution to the formation site of 67P/CG in the solar nebula can be seen in the volatile component of 67P/CG. 相似文献