首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
所谓复杂化学文联型聚氨酯网络是指固化体系中含有官能度大于4的预聚物及固化剂固化形成的交联网络。本文研究分析了复杂化学文联型聚氨酯(PU)网络形成过程和网络结构的特点,建立了复杂网络结构的简化模型,提出了计算其的理论公式。这些公式在PU弹性体及PU推进剂结构与性能之间关系的研究和PU泡沫、弹性体、PU固体推进剂等制品的质量控制中,将有广泛的应用。  相似文献   

2.
概述了热塑性弹性体的概念和种类,指出了热塑性推进剂的特点,分析了复合固体推进剂用热塑性弹性体的特点,综述了商品化惰性热塑性弹性体在复合固体推进剂中的应用进展情况,重点介绍了合成热塑性聚氨酯(聚醚型、聚酯型及醚/酯共聚型)性能特点及其在复合固体推进剂中的应用情况,针对复合固体推进剂用惰性热塑性弹性体研究中存在的困难,提出了可能的解决方法,认为以合成热塑性聚氨酯作为粘合剂会是热塑性推进剂的一个发展方向。  相似文献   

3.
鲁国林 《固体火箭技术》1999,22(3):34-36,58
研究了混合温度及固化温度工艺参数对高燃速HTPB/IOPDI推进剂力学性能的影响,在现有的实验条件下随着合温度升高,推进剂力学性能下降,固化温度升高,推进剂这性能得到改善。  相似文献   

4.
HTPB聚氨酯弹性体的动态力学性能研究   总被引:2,自引:2,他引:2  
用动态热机械分析法研究了固化参数,增塑剂含量,不同助剂对HTPB/TD1聚氨酯弹性体的动态力学损耗的影响。结果表明:在所研究的HTPB/TDI聚氨酯弹性体的动态力学谱中,出现了两个损耗峰:其中低温峰对应于HTPB聚合物的玻璃化转变;常温峰对应于聚合物链中硬段微区的损耗峰。  相似文献   

5.
膏体推进剂和固体推进剂药浆稳态燃烧研究   总被引:1,自引:1,他引:1  
在固体推进剂BDP燃烧模型基础上,引入膏体推进剂燃烧效应这一新参数将模型推广于膏体推进剂和固体推进剂药浆燃烧研究,模型考虑了氧化剂粒度分布,组分配比,催化剂性有和膏体推进剂燃烧热效应等对燃速的影响,以及药浆固化有前后燃速差别,还有靶线法测量了某批次复合推进剂药浆固化前后燃速变化,论文结果可用于膏体推进剂的配方和性能预测,以及利用药浆燃速预示固化后推进剂燃速,监控固体推进剂制造质量。  相似文献   

6.
国外含能材料研究的新进展   总被引:1,自引:0,他引:1  
介绍当前国外含能材料及固体推进剂研究的一些新进展。支化的缩水甘油叠氮聚醚(B-GAP),含能热塑性弹性体及硝酸酯乙基硝胺类化合物(NENA)的研究正受到关注。卡托辛和巴得辛之类二茂铁衍生物是固体推进剂的高效燃速催化剂,氢化端羟基聚戊二烯能改善推进剂的储存性能,热稳定性和易损性。  相似文献   

7.
复合固体推进剂的相(微相)分离   总被引:4,自引:0,他引:4  
复合固体推进剂中存在两种形式的相分离,一种是由于粘合剂体系的混溶性差或是由于粘中合剂和增塑剂的结晶及凝胶作用造成的;另一种为聚氨酯粘合剂基体中软硬段的微相分离,两种相分离可以同时发生,但其对复合固体推进剂性能的影响不同,粘合剂与增塑剂的相分离有可能导臻推进剂性能的严重下降,而适宜的微相分离则能显著提高推进剂的力学性能,可以采用微相分离促进剂、离子化和形成互穿聚合物网络的方法来改善推进剂的微相分离,提高其务学性能。  相似文献   

8.
针对推进剂粘合剂的需要,以聚己二酸乙二醇丙二醇酯(PEPA)为软段,异佛尔酮二异氰酸酯和1,4 丁二醇为硬段合成了一类能为硝酸酯增塑的热塑性聚氨酯弹性体(TPUE)。该弹性体采用熔融预聚法制备。利用GPC、FTIR、DSC、X Ray,力学性能测试和硝化甘油吸收实验等分析技术对聚合物的结构和性能进行了研究。结果表明,合成的热塑性聚氨酯弹性体具有较高的相对分子质量和聚氨酯的结构特征,具有较低的软段玻璃化转变温度和加工温度,具有较好的力学性能,以及与硝酸酯良好的相溶性,具有满足推进剂使用要求的力学性能。  相似文献   

9.
热塑性聚氨酯复合固体推进剂   总被引:3,自引:0,他引:3  
何吉宇  谭惠民 《宇航学报》2008,29(1):252-254
采用与硝化甘油(NG)具有良好相溶性的热塑性聚氨酯弹性体(TPUE)为粘合剂制备了热塑性复合固体推进剂。对热塑性复合固体推进剂的能量性能、力学性能、燃烧性能进行了研究分析。结果表明制备的热塑性复合固体推进剂具有高的理论比冲,可高于265s,具有优良燃烧性能及良好力学性能。  相似文献   

10.
环境湿度对HTPB推进剂力学性能的影响   总被引:4,自引:1,他引:4  
实验研究了环境因素特别是湿度对高固体含量的AP/HTPB推进剂试样力学性能的影响,结果表明,湿度对力学性能尤其是高温力学性能影响显著。这种影响对大型固体发动机装药工艺中力学性能的预示准确度也带来影响,因而需要根据不同的季节合理调整固化参数。  相似文献   

11.
AP/HTPB悬浮液的流变特性研究   总被引:3,自引:0,他引:3  
对含硼富燃固体推进剂用AP/HTPB悬浮液的流变学特性及其影响因素AP粒度形状、填充分数及表面活性剂等方面进行了实验研究。结果表明:AP颗粒间通过粘合剂体系相互作用形成网络结构是悬浮液呈假塑性流动的主要原因;相对表观粘度和填充分数的关系可用含结构粘度项的公式很好地描述。加入表面活性剂SH可改善超细粒AP的表面性能。  相似文献   

12.
环氧化端羟基聚丁二烯/H12 MDI型聚氨酯固化工艺的研究   总被引:1,自引:0,他引:1  
采用环氧化端羟基聚丁二烯(EHTPB)与H12MDI固化交联形成聚氨酯弹性体,利用DSC外推法研究了EHTPB/H12MDI型聚氨酯固化的最佳反应温度,再通过测量固化产物的力学性能研究了其他最佳固化工艺参数,包括反应时间、固化剂H12MDI用量、EHTPB环氧值以及扩链剂BDO用量,并在相同条件下对端羟基聚丁二烯(HTPB)/H12MDI和EHTPB/H12MDI固化产物的力学性能进行了比较。结果表明,EHTPB/H12MDI固化产物具备更好的力学性能,并得到了EHTPB/H12MDI型聚氨酯弹性体的最佳固化工艺条件。  相似文献   

13.
概述热塑性弹性体的基本概念和种类,分析了TPEs的优点和在固体推进剂中应用的可能性,指出了固体推进剂对TPEs的基本要求,综述了惰性TPEs和含能TPEs在固体推进剂配方中的应用研究。  相似文献   

14.
对DATH在复合改性双基推进剂中应用及配装浇 出工艺制DATH-CMDB推进剂药柱过程中出现的较强固化放气问题做了探讨,得出了若干结论。  相似文献   

15.
含能热塑性弹性体推进剂具有高能量、力学性能优异、可循环利用、可回收等优点,近年来成为固体推进剂发展的重要方向。总结了常见的含能热塑性弹性体的综合性能;论述了含能热塑性弹性体推进剂在高能、高燃速、钝感、低特征信号和富燃料推进剂等领域的研究进展;介绍了压延成型、模压成型、螺压成型和熔铸成型四种含能热塑性弹性体推进剂的制备工艺;综述了含能热塑性弹性体推进剂的重复加工性能和回收利用工艺;指出了目前该类推进剂存在的问题和不足,并对其未来发展方向进行了展望。  相似文献   

16.
降低NEPE推进剂燃速压强指数研究   总被引:1,自引:1,他引:1  
研究了两种新型含铅燃速催化剂(ct203-1,ct203-2)对NEPE推进剂燃速压强指数的影响,采用小配方实验和DSC研究了两种催化剂与硝酸酯的相容性以及对推进剂固化反应的影响和对RDX热分解的催化作用,并利用恒压静态燃速仪测量试了推进剂在4-11MPa下的燃烧速度和燃速压强指数。结果表明峡谷种催化剂都表现出与硝酸酯良好的相容性,对推进剂的固化反应有明显的催化作用,对RDX的热分解行为则基本没有  相似文献   

17.
未固化AP/Al/HTPB推进剂燃速预示法——DSC法   总被引:2,自引:1,他引:2  
研究了未固化推进剂的燃速预示方法,用DSC法(差示扫描量热法)研究了多种AP/Al/HTPB推进剂的常压热分解特性。根据BDP燃烧模型,考察了推进剂的燃速与热分解参数的关系,提出了未固化推进剂燃速的预示方法。实验结果表明,用DSC法可较准确地预示未固化推进剂的燃速,并成功预示了某配方的基础燃速。  相似文献   

18.
概述了GAP/AN推进剂的特性,研制状况及发展潜力,针对目前该推进剂的各项性能水平(能量性能,燃烧性能,力学性能)提出了该推进剂存在的问题及改善方法。  相似文献   

19.
IPDI型HTPB推进剂界面软化因素研究   总被引:6,自引:1,他引:5  
根据界面推进剂状态和粘接拉伸强度,研究了HTPB—IP—DI推进剂界面软化的影响因素。结果表明,存放期间半固化衬层吸收的水分是HTPB—IPDI推进剂界面软化的根源:衬层吸水量的大小决定界面软化的程度;衬层中的吸水性填料、存放时间和环境湿度影响衬层的吸水量;而衬层中的固化催化剂、推进剂中的碱性功能助剂ZGY及高固化温度等因素对界面软化起着明显的促进作用。  相似文献   

20.
GAP/AN推进剂的热分解催化研究   总被引:2,自引:0,他引:2  
研究了GAP/AN推进剂的燃速与硝酸铵放热分解峰温之间的相关性,硝酸铵的放热分解峰温越低,推进剂的燃速越高。用热分析方法筛选出了GAP/AN推进剂有效的燃速调节剂MO,它能促进硝酸铵分解过程中质子转移反应,因而使GAP/AN推进剂燃速提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号