首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.  相似文献   

2.
Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.  相似文献   

3.
Genomic instability induced by high and low LET ionizing radiation.   总被引:9,自引:0,他引:9  
Genomic instability is the increased rate of acquisition of alterations in the mammalian genome, and includes such diverse biological endpoints as chromosomal destabilization, aneuploidy, micronucleus formation, sister chromatid exchange, gene mutation and amplification, variations in colony size, reduced plating efficiency, and cellular transformation. Because these multiple endpoints persist long after initial radiation exposure, genomic instability has been proposed to operate as a driving force contributing to genetic plasticity and carcinogenic potential. Many of these radiation-induced endpoints depend qualitatively and quantitatively on genetic background, dose and LET. Differences in the frequency and temporal expression of chromosomal instability depend on all three of the foregoing factors. On the other hand, many of these endpoints appear independent of dose and show bystander effects, implicating non-nuclear targets and epigenetic regulatory mechanisms. The present work will survey results concerning the LET dependence of genomic instability and the role of epigenetic mechanisms, with a particular emphasis on the endpoint of chromosomal instability.  相似文献   

4.
Astronauts are exposed to heavy ions during space missions and heavy ion induced-chromosome damages have been observed in their lymphocytes. This raises the problem of the consequence of longer space flights. Recent studies show that some alterations can appear many cell generations after the initial radiation exposure as a delayed genomic instability. This delayed instability is characterized by the accumulation of cell alterations leading to cell transformation, delayed cell death and mutations. Chromosome instability was shown in vitro in different model systems (Sabatier et al., 1992; Marder and Morgan, 1993, Kadhim et al., 1994 and Holmberg et al., 1993, 1995). All types of radiation used induce a chromosome instability, however, heavy ions cause the most damage. The period of chromosome instability followed by the formation of clones with unbalanced karyotypes seems to be shared by cancer cells. The shortening of telomere sequences leading to the formation of telomere fusions is an important factor in the appearance of this chromosome instability.  相似文献   

5.
Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.  相似文献   

6.
Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a "turbulence region" for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a "blood stem cell bank" might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.  相似文献   

7.
The cell culture of a Chinese hamster was irradiated on a Serpuchov proton synchrotron at a dose of 0.5-4 Gy and a dose rate of 1 Gy/min and by gamma-irradiation at dose 1-5 Gy and dose rate 1.2-1.4 Gy/min. The effect of radiation on the cell culture was judged from chromosomal aberrations in G2-stage of cell cycle and micronuclear test. The relative biological efficience of the secondary radiation was approximately 3. Modifying effect of caffeine on the cells irradiated by secondary radiation of synchrotron was not observed. In the presence of caffeine the effect of gamma-irradiation practically is increased up to the level observed upon secondary irradiation. This suggests that secondary radiation inhibits the repair of the cytogenetic damage.  相似文献   

8.
The induction of HPRT-mutations and survival of Chinese hamster cells (line B11ii-FAF28, clone 431) were studied after irradiation by 4He and 12C-ions of various LET (20-360 keV/micrometers), produced by the U-200 heavy ion accelerator. The RBE increases with LET up to the maximum at 100-200 keV/micrometers and then decreases. Cytogenetic analysis was performed on the HPRT-mutant subclones selected from unirradiated Chinese hamster V-79 cells and from HPRT-mutant subclones that arose after exposure to gamma-rays, 1 GeV protons and 14N-ions (LET-77 keV/micrometers), produced by the synchrophasotron and the U-400M heavy ion accelerator. Slow growing mutant subclones were observed. The cytogenetic properties of individual clones were highly heterogeneous and chromosome instability was observed in both spontaneous and radiation-induced mutants. Chromosome instability was highest among spontaneous mutants and decreased with increasing LET.  相似文献   

9.
Long-term space missions may increase risks of unfavorable consequences for cosmonauts as a result of radiation effects. This paper presents results of a study of cytogenetic damage in cosmonauts' peripheral blood lymphocytes induced by space radiation. Cultivation of lymphocytes and analysis of chromosomal aberrations were made according to generally accepted methods. It is shown that the yields of dicentrics and centric rings scored after long-term space flights are considerably higher than those scored prior to the flights. An attempt was made to assess individual doses received by cosmonauts. Individual biodosimetry doses received by cosmonauts who showed a reliable increase in the yields of chromosomal-type aberrations after their first flights were estimated to be from 0.02 to 0.28 Gy.  相似文献   

10.
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics.  相似文献   

11.
The cytogenetic effects of X-rays and Au ions were investigated in repair-proficient CHO-K1 cells and their radiosensitive mutant strain xrs5, which shows a defect in the rejoining of DNA double-strand breaks. Both cell lines were synchronized by mitotic shake off, irradiated in G1-phase with either 250 kV X-rays or 780 MeV/u Au ions (LET: 1150 keV/micrometer) and chromosome aberrations were analyzed in first post-irradiation metaphases. Isoeffective doses of X-rays for the induction of aberrant cells and aberrations per cell were about 14 times lower for xrs5 than for CHO-K1 cells. After high LET radiation the difference in the cytogenetic response of both cell lines was drastically diminished. Furthermore, the analysis of the aberration types induced by sparsely and densely ionizing radiation showed for both cell lines specific changes in the spectrum of aberration types as LET increases. The experimental results are discussed with respect to the different types of lesions induced by sparsely and densely ionizing radiation.  相似文献   

12.
Understanding the effects of single-particles from conventional radiation biology experiments is problematic due to the stochastics of particle tracks. This complicates the determinations of risk associated with low doses. We have developed a charged particle microbeam, which allows individually counted particles to be delivered to precise cellular locations. The system is capable of delivering a single charged particle with > 99% efficiency. Of these particles 90% are delivered with a resolution of +/- 2 micrometers and 96% with a resolution of +/- 5 micrometers. We have carried out preliminary studies in Chinese hamster V79 cells to monitor the effectiveness of low energy protons at inducing cytological damage. We have used the micronucleus assay as a measure of predominantly lethal chromosome damage. The effects of a single 3.2 MeV proton delivered individually to cells could be measured, with less than 2% of the exposed cells producing micronuclei 24 hours later. The yield of micronuclei formation was essentially linear up to the highest dose (30 particles per cell nucleus) delivered. Ultimately, the ability to target particles to different parts of the cell nucleus may start to impact on models available for chromosome aberration formation and chromosomal Organisation and mechanisms underlying genomic instability.  相似文献   

13.
We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes. 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.  相似文献   

14.
The premature chromosome condensation (PCC) technique was used to investigate chromosomal damage, repair, and misrepair in the G phase of a human/hamster hybrid cell line that contains a single human chromosome. Plateau-phase cell cultures were exposed to either x-rays or a 425 MeV/u beam of neon ions near the Bragg peak where the LET is 183 kev/micrometers. An in situ hybridization technique coupled to fluorescent staining of PCC spreads confirmed the linearity of the dose response for initial chromatin breakage in the human chromosome to high doses (1600 cGy x-ray or 1062 cGy Ne). On Giemsa-stained slides, initial chromatin breakage in the total genome and the rejoining kinetics of these breaks were determined. As a measure of chromosomal misrepair, ring PCC aberrations were also scored. Ne ions were about 1.5 x more effective per unit dose compared to x-rays at producing the initially measured chromatin breakage. 90% of the x-ray-induced breaks rejoined in cells incubated at 37 degrees C after exposure. In contrast, only 50% of Ne-ion-induced breaks rejoined. In the irradiated G1 cells, ring PCC aberrations increased with time apparently by first order kinetics after either x-ray or Ne exposures. However, far fewer rings formed in Ne-irradiated cells after a dose giving a comparable initial number of chromatin breaks. Following x-ray exposures, the yield of rings formed after long repair times (6 to 9 hrs) fit a quadratic dose-response curve. These results indicate quantitative and qualitative differences in the chromosomal lesions induced by low- and high-LET radiations.  相似文献   

15.
Cytogenetic effects of energetic ions with shielding   总被引:1,自引:0,他引:1  
In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in nondividing tissues, such as nervous systems.  相似文献   

16.
In track segment experiments cell survival and chromosome aberrations of mammalian cells have been measured for various heavy ion beams between helium and uranium in the energy range between 0.5 and 960 MeV/u, corresponding to a velocity range of 0.03 to 0.87 C, and an LET spectrum from 10 to 15 000 keV/micrometers. At low LET, the cross section (sigma) for cell killing increases with increasing LET and shows a common curve for all ions regardless of the atomic number. This indicates that in this region the track structure of the different ions is of only a minor influence, and it is rather the total energy transfer, which is important for cell killing. At higher LET values, deviations from a common sigma-LET curve can be observed which indicate a saturation effect. The saturation of the lighter ions occurs at lower LET values than for the heavier ions. These findings are also confirmed by the chromosome data, where the efficiency for the induction of chromosomal aberrations for high LET particles depends on the track structure and is nearly independent of LET. In the heavier beams (Z > or = 10) individual particles cause multiple chromosome breaks in mitotic cells.  相似文献   

17.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

18.
19.
The influence of space flight factors on viability and mutability of plants.   总被引:11,自引:0,他引:11  
The experiments with air-dried Crepis capillaris seeds aboard the Soyuz 16 spaceship and the orbital stations Salyut 5, 6, 7 have revealed an increase in the frequency of aberrant cells in seedlings grown from flight-exposed seeds during the flight (experiment) and after the flight on Earth (flight control) as compared to the ground-based control. The increase in seedlings grown during the flight is more significant than in the flight control. During the flight Arabidopsis thaliana developed from cotyledons to the flowering stage. Analysis of seeds setting on these plants after the flight has shown a reduction in the fertility of these plants and an increase in the frequency of recessive mutants ("Light block-1"). An increased frequency of mutants was also retained in the progeny of plants which had passed through a complete cycle of development during the flight ("Fiton-3"). Suppression of embryo viability was observed in all experiments and expressed itself in reduced germinating ability of seeds from the exposed plants and in the early death of seedlings. Damages resulting from chromosome aberrations are eliminated in the first postflight generation and damages resulting from gene mutations and micro-aberrations are preserved for a longer time.  相似文献   

20.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号