首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

3.
We have used Omniweb data in order to identify the sheath and the ejecta boundaries of 67 shock-driving interplanetary coronal mass ejections during the time period 2003–2006. We examine and compare their statistical properties (speed, magnetic field strength, proton density and temperature, proton plasma beta), with those of the typical solar wind. We also calculate their passage time and radial width. We study the correlation between the ejecta and sheath characteristics.  相似文献   

4.
5.
It is generally assumed that magnetic fields inside interplanetary magnetic clouds and flux ropes in the solar photosphere are force-free. In order to model such fields, the solution of rot B = B is commonly used where  = const. But comparisons of this solutions with observations show significant difference. To treat this problem,we examine the solutions with .  相似文献   

6.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


7.
Space weather is significantly controlled by halo coronal mass ejections (HCMEs) originating close to the central meridian and directing toward the Earth. Unfortunately, coronagraphic observations (especially for HCMEs) are subject to a projection effect which makes it impossible to determine the true radial velocity and width of CMEs. However, these parameters can be estimated by correcting for the projection effect using the asymmetric cone model (Michalek, 2006). A set of 20 CMEs, observed as halo events in the LASCO field of view and simultaneously as limb events in the STEREO/SECCHI field of view, are used to check the accuracy of the asymmetric cone model. For this purpose, characteristics of the considered CMEs (angular widths and radial speeds) measured in STEREO/SECCHI images are compared with those obtained by the asymmetric cone model. We demonstrate that the widths and speeds determined by both methods are very similar. Correlation coefficients for speeds and angular widths are 0.99 and 0.96, respectively. We have also shown that the projection effect is unpredictable and could sometimes be very significant (up to 100% of the velocity measured in the LASCO field of view). On average, the SOHO/LASCO projected speeds for the HCMEs are 23% smaller than the radial velocities obtained from the STEREO/SECCHI images.  相似文献   

8.
An uniform out-of-plane magnetic field component By0 is added to the equilibrium Harris sheet with plasma β = 0.5 and Lc = 0.5di (where Lc is the half-width of the equilibrium current layer and di is the ion inertial length). Driven by the continuous boundary inflows, the magnetic reconnections with the guide field By0/B0 ranging from 0 to 4.0 are investigated using a 2.5D Hall magnetohydro-dynamic (MHD) code developed from a multi-step implicit scheme. The features of the reconnection field are substantially altered in the presence of the guide field. The openness of the magnetic separatrix angle is slightly reduced and the anti-symmetric quadrupolar structure of By field and the symmetric distribution of plasma pressure P are replaced by an asymmetric By four-wing structure and an asymmetric P plot as a non-zero By0 is added. The decoupling of electrons and ions also occurs near the X line in the case with a finite By0, but the effect of initial By0 on the electron flow is greater than that on the ion flow. The reconnection rates at the X-line drops from 0.151 to 0.06, namely, ∂A/∂t is reduced by a factor of 2.5 as By0/B0 increases from 0 to 4.0. The reduction of reconnection rate might be related to the reducing openness of reconnection layer with the increasing By0.  相似文献   

9.
The magnetic field in many astrophysical plasmas – such as the solar corona and Earth’s magnetosphere – has been shown to have a highly complex, three-dimensional structure. Recent advances in theory and computational simulations have shown that reconnection in these fields also has a three-dimensional nature, in contrast to the widely used two-dimensional (or 2.5-dimensional) models. Here we discuss the underlying theory of three-dimensional magnetic reconnection. We also review a selection of new models that illustrate the current state of the art, as well as highlighting the complexity of energy release processes mediated by reconnection in complicated three-dimensional magnetic fields.  相似文献   

10.
We study the short-term topological changes of equatorial and polar coronal hole (CH) boundaries, such as a variation of their area and disintegration, associated to reconnection with nearby (within 15° distance) quiescent prominence magnetic fields leading to eruptions and subsequent Coronal Mass Ejections (CMEs). The examples presented here correspond to the recent solar minimum years 2008 and 2009. We consider a temporal window of one day between the CH topological changes and the start and end times of prominence eruptions and onset of CMEs. To establish this association we took into account observational conditions related to the instability of prominence/filaments, the occurrence of a CME, as well as the subsequent evolution after the CME. We found an association between short-term local topological changes in CH boundaries and the formation/disappearance of bright points near them, as well as, between short-term topological changes within the whole CH and eruptions of nearby quiescent prominences followed by the appearance of one or more CMEs.  相似文献   

11.
    
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   

12.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

13.
    
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

14.
It is common to use imaging instruments such as EUV and X-ray imagers and coronagraphs to study large-scale phenomena such as coronal mass ejections and coronal waves. Although high resolution spectroscopy is generally limited to a small field of view, its importance in understanding global phenomena should not be under-estimated. I will review current spectroscopic observations of large-scale dynamic phenomena such as global coronal waves and coronal mass ejections. The aim is to determine plasma parameters such as flows, temperatures and densities to obtain a physical understanding of these phenomena.  相似文献   

15.
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved.  相似文献   

16.
The shape of flux profiles of gradual solar energetic particle (SEP) events depends on several not well-understood factors, such as the strength of the associated shock, the relative position of the observer in space with respect to the traveling shock, the existence of a background seed particle population, the interplanetary conditions for particle transport, as well as the particle energy. Here, we focus on two of these factors: the influence of the shock strength and the relative position of the observer. We performed a 3D simulation of the propagation of a coronal/interplanetary CME-driven shock in the framework of ideal MHD modeling. We analyze the passage of this shock by nine spacecraft located at ∼0.4 AU (Mercury’s orbit) and at different longitudes and latitudes. We study the evolution of the plasma conditions in the shock front region magnetically connected to each spacecraft, that is the region of the shock front scanned by the “cobpoint” (Heras et al., 1995), as the shock propagates away from the Sun. Particularly, we discuss the influence of the latitude of the observer on the injection rate of shock-accelerated particles and, hence, on the resulting proton flux profiles to be detected by each spacecraft.  相似文献   

17.
    
The interplanetary manifestations of coronal mass ejections, ICMEs, have many signatures in the solar wind but none of these signatures in the velocity, density, temperature, magnetic field, plasma composition or energetic particles uniquely and unambiguously identifies the occurrence of an ICME. Different investigators identify different events when confronted with the same data. Herein, we present a single physical parameter that combines information from multiple plasma components and that holds the promise of defining a beginning and an end of the region of influence ICME and an indication of the location of the encounter with the ICME relative to its central meridian. This parameter is the total plasma pressure perpendicular to the magnetic field, consisting of the sum of the magnetic pressure and plasma kinetic or thermal pressure. It provides a vehicle for classifying the nature of the ICME encounter and, in many cases, provides an unambiguous start and stop time of the event. However, it does not provide a start and stop time for any embedded flux rope. This identification depends on examination of the magnetic field.  相似文献   

18.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

19.
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper.  相似文献   

20.
We revisit an example of “quasi-steady” magnetic reconnection at the dayside magnetopause on February 11, 1998, observed by Equator-S and Geotail at the dawnside magnetopause. Phan et al. [Phan, T.D. et al., 2000. Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850.] reported oppositely directed jets at these spacecrafts and inferred a length of the reconnection line of about 38RE. Pinnock et al. [Pinnock, M., Chisham, G., Coleman, I.J., Freeman, M.P., Hairston, M., Villain, J.-P., 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann. Geophys. 21, 1467–1482.] used measurements from SuperDARN radars to show that the reconnection electric field was variable. Here we complement this work by obtaining snapshots of the reconnection electric field from the in situ observations. To do this, we apply a reconstruction method based on a model of compressible Petschek-type magnetic reconnection. This independent method uses magnetic field observations as input data to calculate the reconnection electric field. We obtain average values of Erec in the range of 0.4–2.4 mV/m. Further we infer a distance perpendicular to the reconnection line of 0.4–0.6RE. The model results are compared with the two studies mentioned above. It thus appears that while the transfer of momentum for this event is indeed large-scale, the actual rate depends on the time it is measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号