共查询到20条相似文献,搜索用时 0 毫秒
1.
虚拟仿真以其低成本、短周期、高质量的特点,逐渐成为复杂环境下红外成像制导武器设计分析、验证和评估的主要手段之一。以某武装直升机目标为对象,首先利用基于航空发动机物理模型的方法,通过全尺寸几何建模、计算蒙皮、尾喷和羽烟等主要红外辐射源的流场和温度场,利用灰度等级描述红外辐射信息,生成不同视向角下的近场红外辐射亮度显示,并存储形成数据库。然后根据具体使用时的条件从数据库中调用,按照距离进行大气衰减,最终形成视点处的红外辐射亮度显示。实验结果证明,算法生成的武装直升机红外图像真实感强,实时性好,可用于红外成像制导导弹仿真和夜航模拟训练系统的红外视景显示,具有一定的军事参考价值。 相似文献
2.
3.
讨论了红外成像系统在工作温度变化时产生的温度效应及其对成像的影响,包括光学元件的热变形、光学窗口的热应力及窗口的热辐射噪声,将结构件材料的线胀系数作为优化变量,提出了光学机械综合被动补偿无热化设计方法.采用热瞳判定与高密度光线计算法分析了光学窗口的热辐射,提出了基于表面辐射分析的无热化优化方法.计算表明,无热化设计使系统对温度的均匀变化和轴向温度梯度不敏感,对热应力不敏感,但径向温度梯度对像质影响较大.基于表面辐射分析的优化设计可以减少窗口辐射在探测器上的功率密度. 相似文献
4.
5.
6.
D. A. Brain 《Space Science Reviews》2006,126(1-4):77-112
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares
elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian
atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer
(ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks
in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived
in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated
with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment
has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is
highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars
with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data,
as well as multi-spacecraft observations. 相似文献
7.
F. M. Flasar V. G. Kunde M. M. Abbas R. K. Achterberg P. Ade A. Barucci B. B’ezard G. L. Bjoraker J. C. Brasunas S. Calcutt R. Carlson C. J. C’esarsky B. J. Conrath A. Coradini R. Courtin A. Coustenis S. Edberg S. Edgington C. Ferrari T. Fouchet D. Gautier P. J. Gierasch K. Grossman P. Irwin D. E. Jennings E. Lellouch A. A. Mamoutkine A. Marten J. P. Meyer C. A. Nixon G. S. Orton T. C. Owen J. C. Pearl R. Prang’e F. Raulin P. L. Read P. N. Romani R. E. Samuelson M. E. Segura M. R. SHOWALTER A. A. Simon-Miller M. D. Smith J. R. Spencer L. J. Spilker F. W. Taylor 《Space Science Reviews》2004,115(1-4):169-297
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date. 相似文献
8.
T. Matsumoto 《Space Science Reviews》1995,74(1-2):73-79
The IRTS is a first Japanese infrared satellite mission which will be launched on February of 1995 by HII rocket. The IRTS is one of the mission experiments aboard the small space platform, SFU. The telescope aperture of the IRTS is 15cm, but is cooled by liquid Helium to realize very low background condition. Four instruments are installed on the focal plane which cover wide wavelengths from near infrared to submillimeter regions. The IRTS is optimized to observe the diffuse extended emission, and will survey about 10% of the sky in 20 days of mission life. The IRTS will provide significant information on cosmology, interstellar matter, late type stars, and interplanetary dust. 相似文献
9.
10.
11.
对光纤激光焊接2.5mm厚TC4对接接头的拉伸力学性能进行研究,其研究方法为在常规的拉伸试验中,附加同步的红外热像测量,实时记录拉伸全过程中试样在力作用下温度场的变化。常规测试结果表明:接头与母材的强度相当,延伸率只达到母材的59.53%。试样温度场测试结果表明:当接头和母材受到的轴向载荷低于屈服强度对应载荷时,接头在热影响区部位会产生较大的应力集中,但接头和母材均未产生明显的塑性变形;当载荷等于屈服强度对应载荷时,均在宏观屈服点之前发生了微观的塑性变形;当载荷等于抗拉强度对应载荷时,接头发生剧烈塑性变形区域的长度只达到母材的35%,且接头与母材发生剧烈塑性变形区域的长度随拉伸过程的进行逐渐增加。 相似文献
12.
This review paper is a survey of infrared astronomy up to early 1969. The techniques and photometric standards are mentioned briefly, and results cover solar, lunar, and planetary observations. Point sources and extended sources both within and beyond the Galaxy are included, ending with the problem of cosmic background radiation. It is concluded that great progress will be possible when large infrared telescopes are placed above the atmosphere in orbit for extended periods of time.This work was conducted under the McDonnell Douglas Corporation Independent Research and Development Program. 相似文献
13.
14.
Stephan D. Price 《Space Science Reviews》2009,142(1-4):233-321
A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts. 相似文献
15.
Stephan D. Price 《Space Science Reviews》2004,113(3-4):409-456
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.This revised version was published online in July 2005 with a corrected cover date. 相似文献
16.
Stephan D. Price 《Space Science Reviews》2004,113(3):409-456
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable. 相似文献
17.
In this paper expressions are derived for the error in position measurement for the problem of estimating the position of an infrared target in a random background and the combined prob lem when white detector noise is also affecting the estimation. Space filters performing linear scanning, nutation, and rotation are considered. A linear scanning infrared system is then considered in greater detail. The noise on the error signal is calculated, taking into account both the estimation error, as discussed in the first part, and "false alarms" occurring in the scan area far from the target. 相似文献
18.
S. A. Stern D. C. Slater J. Scherrer J. Stone M. Versteeg M. F. A’hearn J. L. Bertaux P. D. Feldman M. C. Festou Joel Wm. Parker O. H. W. Siegmund 《Space Science Reviews》2007,128(1-4):507-527
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign. 相似文献
19.
Thérèse Encrenaz 《Space Science Reviews》1992,61(1-2):13-17
The ISO mission is expected to allow significant progress in the study of Solar-System objects, especially concerning planetary and cometary atmospheres. Beyond ISO, future Solar-System studies using infrared space missions will require an extension of the spectral coverage toward longer wavelengths and increased spatial capabilities for imaging spectroscopy. 相似文献
20.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ~2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time. 相似文献