首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the Hubble Space Telescope (HST), the next generation James Webb Space Telescope (JWST) is being developed to be launched in a few years. JWST will be a segmented mirror telescope with a design much like that developed for ground-based telescopes over the past 20 years. Several segmented mirror telescopes are currently in operation, and next generation ground-based telescopes of the 30-m class are also being designed using segmented primary mirrors. Regardless of size, segmented primary mirror telescopes often require the use of aspheric segment mirrors. One of the key factors in fabrication of aspheric segment mirrors is feasibility of testing off-axis surfaces with high accuracy. A couple of test methods have been investigated for aspheric off-axis segments. As a case study, we apply these test methods to secondary segmented mirror models of the Giant Magellan Telescope. We derive required dimensions of test set-ups and assess sensitivity of optical alignment. Characteristics of the test methods are also discussed.  相似文献   

2.
Future of Space Astronomy: A global Road Map for the next decades   总被引:1,自引:0,他引:1  
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from radio to high energy γ rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and “ground based” observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. While the present set of astronomical facilities is impressive and covers the entire electromagnetic spectrum, with complementary space and “ground based” telescopes, the situation in the next 10–20 years is of critical concern. The James Webb Space Telescope (JWST), to be launched not earlier than 2018, is the only approved future major space astronomy mission. Other major highly recommended space astronomy missions, such as the Wide-field Infrared Survey Telescope (WFIRST), the International X-ray Observatory (IXO), Large Interferometer Space Antenna (LISA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), have yet to be approved for development.  相似文献   

3.
This report describes current and future solar-terrestrial space missions of the Russian Federal Space Agency. They are discussed in the context of the International Living With a Star activity aimed at consolidation of efforts in developing a balanced cooperative program of solar-terrestrial and space weather oriented research. We provide information on several missions that are at different stages of realization: solar observing – CORONAS-F, CORONAS-PHOTON, and INTERHELIOPROBE; and magnetospheric – RESONANCE, ROY, and INTERBALL-PROGNOZ.  相似文献   

4.
For the past two years, some real progress has been made in Chinese Space Astronomy, though we have not launched any missions exclusively belonging to the scope of Astronomy. In order to program the next five years' national plan (2006-2010), the Chinese Space Agency organized a series of authorized evaluations for the future missions. Among more than ten astronomical mission proposals, several were selected to give the green light to continue for their Phase A studies. We try to briefly outline these proposals.  相似文献   

5.
The IONOSAT project (from IONOspheric SATellites) is proposed by National Space Agency of Ukraine for First European Space Program as a part of Space Weather (SW) Program. As it is commonly accepted, Space Weather means the changes of the conditions on the Sun, in solar wind, magnetosphere and ionosphere which may affect the operation and reliability of on-board and ground technological systems and threaten human health. In this chain ionosphere is specific and integral part of SW formation. Moreover, namely in the ionosphere main part of the energy absorption of Sun-activated sporadic corpuscular and radiation fluxes takes places. The excitation of ionosphere by falling fluxes produces its “luminescence” in wide frequency band – from ULF waves till ultraviolet – and by this ionosphere works as an efficient “screen” or SW indicator.A goal of the proposed project is long-term spatial–temporal monitoring of main field and plasma parameters of ionosphere with aim to further develop fundamental conceptions of solar-terrestrial connections physics, nowcasting and forecast of SW, and diagnostics of natural and technogenic hazards with the help of scientific payload installed on-board a cluster of 3 low-Earth orbit (LEO) microsatellites (tentative launch date – 2012 year).The state of the project proposal and realization plans are discussed.  相似文献   

6.
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z  6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013.  相似文献   

7.
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.  相似文献   

8.
The LISA (Laser Interferometer Space Antenna) mission has been selected by the European Space Agency’s Science Programme Committee as the third large-class mission of the Cosmic Vision Programme, addressing the science theme of the Gravitational Universe. With a planned launch date in 2034, LISA will be the first ever space-borne Gravitational Wave observatory, relying on laser interferometry between three spacecraft orbiting the Sun in a triangular formation. Airbus is currently leading an industrial Phase A system study on behalf of the European Space Agency. The paper will address the astrodynamics challenges associated with the LISA constellation design, driven by tight requirements on the geometric quality metrics of the near equilateral formation.  相似文献   

9.
During its present appearance, Comet Halley is the focus of an unparalleled global scientific effort of exploration from the ground; from Earth orbit; from Venus orbit; from interplanetary space; and from within the comet itself.

The various activities in space are coordinated by the four space agencies — the European Space Agency (ESA), Intercosmos of the USSR Academy of Sciences, the Japanese Institute of Space and Astronautical Science (ISAS), and the National Aeronautics and Space Administration (NASA) — through the Inter-Agency Consultative Group (IACG). Coordination of the activities of the ground-based observers is provided through the International Halley Watch (IHW). The IHW was established in 1980, the IACG in 1981.

The single goal of both, IHW and IACG is to maximize the overall scientific results of all efforts in the exploration of Comet Halley from the ground and from space. The obvious success of this unique endeavor might serve as example for future cooperative scientific programs.  相似文献   


10.
Precise Orbit Determination (POD) for the Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first core explorer mission by the European Space Agency (ESA), forms an integrated part of the so-called High-Level Processing Facility (HPF). Two POD chains have been set up referred to as quick-look Rapid and Precise Science Orbit determination or RSO and PSO, respectively. These chains make use of different software systems and have latencies of 1 day and 2 weeks, respectively, after tracking data availability. The RSO and PSO solutions have to meet a 3-dimensional (3D) position precision requirement of 50 cm and a few cm, respectively. The tracking data will be collected by the new Lagrange GPS receiver and the predicted characteristics of this receiver have been taken into account during the implementation phase of the two chains.  相似文献   

11.
Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter’s icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.  相似文献   

12.
SSM (Solar Sail Materials) is an on-going project for the European Space Agency (ESA) relying on past and recent European solar sail design projects. It aims at developing and testing future technologies suitable for large, operational solar sailcrafts.  相似文献   

13.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

14.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

15.
We propose a dual-rendezvous mission, targeting near-Earth asteroids, including sample-return. The mission, Asteroid Sampling Mission (ASM), consists of two parts: (i) flyby and remote sensing of a Q-type asteroid, and (ii) sampling of a V-type asteroid. The targeted undifferentiated Q-type are found mainly in the near-Earth space, and to this date have not been the target of a space mission. We have chosen, for our sampling target, an asteroid from the basaltic class (V-type), as asteroids in this class exhibit spectral signatures that resemble those of the well-studied Howardite–Eucrite–Diogenite (HED) meteorite suite. With this mission, we expect to answer specific questions about the links between differentiated meteorites and asteroids, as well as gain further insight into the broader issues of early Solar System (SS) evolution and the formation of terrestrial planets. To achieve the mission, we designed a spacecraft with a dry mass of less than 3 tonnes that uses electric propulsion with a solar-electric power supply of 15 kW at 1 Astronomical Unit (AU). The mission includes a series of remote sensing instruments, envisages landing of the whole spacecraft on the sampling target, and employs an innovative sampling mechanism. Launch is foreseen to occur in 2018, as the designed timetable, and the mission would last about 10 years, bringing back a 150 g subsurface sample within a small re-entry capsule. This paper is a work presented at the 2008 Summer School Alpbach,“Sample return from the Moon, asteroids and comets” organized by the Aeronautics and Space Agency of the Austrian Research Promotion Agency. It is co-sponsored by ESA and the national space authorities of its Member and Co-operating States, with the support of the International Space Science Institute and Austrospace.  相似文献   

16.
CNES (Centre National d'Études Spatiales) acts, since its creation in 1961, as the French Space Agency and is a key leader in space research, and scientific and technical developments. Its involvement in a broad range of programs has positioned CNES as one of the most relevant national research agencies, leading efforts and initiatives in both European and international contexts. This article provides a review and analysis of the scientific and technical production of CNES, using as input the papers written by CNES staff referenced in the Scopus database. The period under study dates to 1964 and includes more than 10.000 documents. The study analyses measurable characteristics of CNES documents’ production: productivity, collaboration, and impact through citations. This paper provides a contribution aimed to gain a better understanding and characterisation of the scientific activity completed by Space agencies.  相似文献   

17.
SAX overview     
Information is given concerning the satellite for X-Ray Astronomy SAX, a project of the Italian Space Agency in collaboration with the Netherlands Agency for Aerospace Programs, due for launch at end 1993.

The scientific objectives and the payload are described, together with the ground system structure and organization.  相似文献   


18.
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended.  相似文献   

19.
飞轮扰动原因与测量技术现状   总被引:3,自引:0,他引:3  
飞轮是高精度航天器姿态控制的主要干扰源之一. 分析了引起飞轮产生扰动的主要因素, 详细介绍了美国航空航天局哥达德空间飞行中心、日本宇宙航空开发机构筑波空间中心、美国麻省理工学院空间系统实验室以及中国科研单位在研究中采用的飞轮扰动测量技术, 为进一步开展飞轮扰动测量技术研究奠定了基础.   相似文献   

20.
Since 30 September 2009, following the launch and in-orbit testing of the most sophisticated gravity mission ever built, the European Space Agency (ESA) GOCE satellite is in ‘measurement mode’, providing continuous time series of satellite gravity gradient (SGG) observations and GPS satellite-to-satellite tracking (SST) observations. The availability of GPS SST observations allows the precise reconstruction of the GOCE position and thus the precise geolocation of the SGG observations. The SGG observations are based on the differences between observations taken by pairs of accelerometers, which need to be corrected first by applying a so-called calibration matrix and second by subtracting rotational terms (centrifugal and angular accelerations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号