首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

2.
《Air & Space Europe》2001,3(1-2):77-79
The MINISAT-01 mission, launched in 1997, has been an important success in the technological area due to the platform qualification in the technological area due to the platform qualification, and also from the scientific point of view. Thinking of MINISAT 01 as the first step in the whole INTA MINISAT programme, the behaviour of this satellite allows us to tackle with confidence more ambitious satellites, such as Earth Observation missions where the requirements and constraints are more strict.  相似文献   

3.
It is noted that the projected increase in satellites needed to satisfy future military, scientific, and commercial missions will soon be overwhelming current ground-operations capabilities. An intelligent processing architecture, IntelliSTAR, that addresses the potential of automating the entire satellite operations domain (planning, scheduling, execution, and analysis) is discussed. The architecture has been developed with flexibility in mind. In particular, IntelliSTAR has been structured to allow for development and validation on the ground, prior to deployment in space. The overall architecture is described, with particular emphasis placed on the scheduling of satellite missions  相似文献   

4.
月球是地球最重要的天然卫星,当前国际上正在迎来新一轮月球探索高潮,数十个机构和商业团队正在规划月球探索任务,并设想在未来实现航天员长期驻月,围绕月球的“太空竞赛”刚刚开始。月球GNSS(基于现有的地球GNSS以及新的环月卫星通信导航基础设施的月球卫星通信导航定位技术)是空间基准科研的基础,能够提供航天器着陆定位以及月面(及其覆盖空间)定位、导航与授时等服务,同时可以将月球作为试验场,将导航工具包扩展到更远的目的地(如火星)。对欧美近期发布的月球GNSS规划进行了整理归纳,其中包括美国月球GNSS接收机实验(LuGRE)计划和欧洲月光(MoonLight)计划,以及美国中远期月球通信中继和导航系统(LCRNS)计划,这些计划可以为我国开展月球GNSS规划提供参考。  相似文献   

5.
Strategies for in-orbit calibration of drag-free control systems   总被引:3,自引:0,他引:3  
Drag-Free Satellites (DFS) are a class of scientific satellite missions designed for research on fundamental physics as well as geodesy. They consist, basically, of a small inner satellite (test mass) located in a cavity inside a larger satellite, the normal one. The Drag-Free Attitude Control System (DFACS) is the most complex technology on-board these satellites. This key technology allows the residual accelerations on experiments on board the satellites to be significantly reduced. In order to achieve this very low disturbance environment (for some missions <10−14 g) the drag-free control system has to be optimized. This optimization process is required because of uncertainties in system parameters that demand a robustness of the control system. This paper will present approaches for in-orbit calibration of drag-free control systems. The discussion includes modeling, with scale factors and cross couplings, possible excitation signals, comparison of different parameter identification/estimation methods as well as simulation results.  相似文献   

6.
The European Space Agency's (ESA) multipurpose satellite tracking system is introduced. The system is able to perform accurate satellite ranging and Doppler measurements for a variety of mission types, i.e., from near-Earth satellites to deep space probes. The ranging signal is analyzed and described in an analytical manner from which the limits of the system performance are derived. A model of the overall system is presented and a few simulation results obtained thereby are compared with measurements performed with the ESA's Giotto and Hipparcos scientific missions  相似文献   

7.
下一代数据中继卫星系统发展思考   总被引:1,自引:0,他引:1  
通过系统阐述中继卫星系统的发展过程,给出了主要国家和组织的中继卫星系统技术体制和现状.再结合卫星、载人航天器和深空探索的未来发展趋势,分析了下一代中继卫星系统的发展需求.在此基础上,从体系结构、卫星平台、链路调制体制、网络协议等方面,探讨并给出了下一代中继卫星系统的发展趋势和技术途径.为满足未来近地、深空航天任务,以及临近、低空快速移动用户的不同要求,节约系统成本,下一代中继卫星系统将向专业化和与其他系统融合的方向发展:星间链路将增加激光链路,数据速率可达到10 Gbit/s以上;多址业务成为主用,同时支持用户数能力将极大提高;对于链路调制体制,在采用CR(Cognitive Radio,认知无线电)和SDR(Software Defined Radio,软件定义无线电)技术的基础上,可实现实时自适应调整和根据需求加载配置;数据传输将采用网络化方式,天地间构成一体化DTN(Delay Tolerant Network,容延迟网络).  相似文献   

8.
The Solar Mass Ejection Imager (SMEI) was the first of a new class of heliospheric and astronomical white-light imager. A heliospheric imager operates in a fashion similar to coronagraphs, in that it observes solar photospheric white light that has been Thomson scattered by free electrons in the solar wind plasma. Compared with traditional coronagraphs, this imager differs in that it observes at much larger angles from the Sun. This in turn requires a much higher sensitivity and wider dynamic range for the measured intensity. SMEI was launched on the Coriolis spacecraft in January 2003 and was deactivated in September 2011, thus operating almost continuously for nearly nine years. Its primary objective was the observation of interplanetary transients, typically coronal mass ejections (CMEs), and tracking them continuously throughout the inner heliosphere. Towards this goal it was immediately effective, observing and tracking several CMEs in the first month of mission operations, with some 400 detections to follow. Along with this primary science objective, SMEI also contributed to many and varied scientific fields, including studies of corotating interaction regions (CIRs), the high-altitude aurora, zodiacal light, Gegenschein, comet tail disconnections and motions, and variable stars. It was also able to detect and track Earth-orbiting satellites and space debris. Along with its scientific advancements, SMEI also demonstrated a significantly improved accuracy of space weather prediction, thereby establishing the feasibility and usefulness of operational heliospheric imagers. In this paper we review the scientific and operational achievements of SMEI, discuss lessons learned, and present our view of potential next steps in future heliospheric imaging.  相似文献   

9.
In the first part (Sections I–III) a brief historical review of the progress of our knowledge of the precipitation of auroral electrons is given. Observations by different techniques, in terms of detectors aboard balloons, sounding rockets, and polar-orbiting satellites, are reviewed (Sections I). The precipitation morphology is examined in terms of synoptic statistical results (Section II) and of latitudinal survey along individual satellite passes (Section III). In the second part (Section IV), a large number of simultaneous observations of auroras and precipitating auroral electrons by DMSP satellites are examined in detail, and it is shown that precipitation characteristics of auroral electrons are distinctly different for the discrete aurora and the diffuse aurora. In the third part (Section V), the source region of auroral electrons is discussed by comparing the auroral electron precipitation at low altitudes observed by DMSP satellites with the simultaneous ATS-6 observations near the magnetospheric equatorial plane approximately along the same geomagnetic field line. It is shown that the diffuse aurora is caused by direct dumping of the plasma sheet electrons from the equatorial region, whereas discrete auroras require acceleration of electrons between the plasma sheet and the polar atmosphere. The parallel electric field along the geomagnetic field line above the ionosphere is a likely candidate for the acceleration mechanism.Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20810, U.S.A.  相似文献   

10.
The next generation of low cost Global Positioning System (GPS) receivers for space navigation and attitude determination are positioned to take full advantage of the improvements made in the commercial GPS receivers used for terrestrial applications. There have been recent improvements made to the GPS receivers that include the addition of extra GPS satellite channels that can be tracked simultaneously. The older style GPS receivers were only able to handle five channels at a time. In order for proper determination of three-dimensional position, a minimum of four channels was required and the fifth channel of the receiver was reserved to perform search functions for finding the next satellite. This included searching for satellites that could be used to replace exiting satellites moving out of the Field of View (FOV). The search function also enables the GPS receiver to search for the best constellation for maximum performance accuracy. The fifth roaming channel also provided a best next-satellite selection capability in case the field of view to one of the satellites was blocked or shaded.  相似文献   

11.
12.
There is a problem in deciding whether a radar observation of an object in outer space is of a known catalogued satellite or of a newly launched satellite. With some radar systems joint or dumbell radar images of two satellites cause occasional confusion, and appropriate decision theory for this situation is derived. Decision theory for the individual image is given in an appendix.  相似文献   

13.
Results of radio-investigations of the ionosphere with the help of coherent radiowaves emitted by beacons placed on artificial Earth satellites are given. The data discussed cover the period from 1958, after the launch of Sputniks 1 and 3, until the last years, when the geostationary satellites ATS were launched. It is shown that up to the present justice has not be done in these experiments to investigations of the local properties of the near Earth plasma. This is a great deficiency in this field of investigation. Data are given which illustrate results of investigations of local ionospheric characteristics. Such data may help to solve some problems in the present stage of the near Earth plasma study. A new possibility of radio-investigation of the near Earth plasma with the help of a chain of satellites connected together is pointed out.  相似文献   

14.
《Air & Space Europe》2000,2(5):80-83
In the framework of the research project TUBSAT-N (Technical University of Berlin SATellite-Nano) it has been demonstrated that it is possible to achieve ultra low cost space access very quickly. TUBSAT-N and TUBSAT-N1 were launched as a satellite cluster in July 1998 with a convertible Russian military SS-23 SHTIL Rocket from a submarine. This project should prove that nanosatellite technology can be a good solution for a commercial ultra-low cost project.  相似文献   

15.
The criteria for selecting the orbital and attitude prediction accuracy requirements for communications satellites have been investigated in a previous paper by the author. The present paper extends the analysis to the satellites engaged in remote sensing and scientific missions. A unified approach has been developed to examine the problem of the prediction accuracy requirements for the two missions.  相似文献   

16.
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.  相似文献   

17.
卫星在空间碎片撞击下的易损性分析方法研究   总被引:1,自引:0,他引:1  
针对厘米/毫米级空间碎片对卫星的撞击风险评估,在对卫星部件的失效模式及影响分析(FMEA)的基础上,结合射线跟踪法和失效树分析法建立一种卫星目标的易损性分析方法,计算卫星在空间碎片撞击下导致不同损伤等级的系统失效概率PK/H。详细介绍了该易损性分析方法的总体思路和各项关键技术,并给出了应用实例。该方法可推广应用于载人航天器上,对于航天器的撞击风险评估和防护结构优化设计有重要意义。  相似文献   

18.
《Air & Space Europe》2000,2(2):49-54
One of the key characteristics of space transportation in the next decade will be the diversity of the missions required, demanding increased flexibility in terms of launch services. This requirement will be apparent in all three market segments: geostationary satellites, constellations and scientific/governmental applications. To meet this new demand, the space transportation operators are seeking to establish a range of launchers.  相似文献   

19.
软件无线电在卫星测控模拟器中的应用   总被引:1,自引:0,他引:1  
卫星测控模拟器在航天领域有着重要的应用,以往的卫星测控模拟器多为一星专用.为顺应降低卫星操作费用的发展趋势,通用卫星测控模拟器应运而生.本文介绍了软件无线电的基本思想,及其在通用卫星模拟器设计中的应用与优势.  相似文献   

20.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号