首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Experimental studies of visual mechanisms suggests that the CNS represents image information with respect to preferred horizontal and vertical axes, as shown by a phenomenon known as the "oblique effect". In the current study we used this effect to evaluate the influence of gravity on the representation and storage of visual orientation information. Subjects performed a psychophysical task in which a visually-presented stimulus line was aligned with the remembered orientation of a reference stimulus line presented moments before. The experiments were made on 5 cosmonauts during orbital space flight and additionally on 13 subjects in conditions of normal gravity with a tilting chair. Data were analyzed with respect to response variability and timing. On earth, these measurements for this task show a distinct preference for horizontally and vertically oriented stimuli when the body and gravitational axes were aligned. This preference was markedly decreased or disappeared when the body axis was tilted with respect to gravity; this effect was not connected with ocular counter-rolling nor could we find a preference of any other intermediate axis between the gravity and body aligned axes. On the other hand, the preference for vertical and horizontal axes was maintained for tests performed in microgravity over the course of a 6 month flight, starting from flight day 6. We concluded that subjects normally process visual orientation information in a multi-modal reference frame that combines both proprioceptive and gravitational cues when both are available, but that a proprioceptive reference frame is sufficient for this task in the absence of gravity after a short period of adaptation. Some of the results from this study have been previously published in a preliminary report. Grant numbers: 99-04-48450.  相似文献   

2.
We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move “with” or “against” their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.  相似文献   

3.
In order to measure the perceived direction of "up", subjects judged the three-dimensional shape of disks shaded to be compatible with illumination from particular directions. By finding which shaded disk appeared most convex, we were able to infer the perceived direction of illumination. This provides an indirect measure of the subject's perception of the direction of "up". The different cues contributing to this percept were separated by varying the orientation of the subject and the orientation of the visual background relative to gravity. We also measured the effect of decreasing or increasing gravity by making these shape judgements throughout all the phases of parabolic flight (0 g, 2 g and 1 g during level flight). The perceived up direction was modeled by a simple vector sum of "up" defined by vision, the body and gravity. In this model, the weighting of the visual cue became negligible under microgravity and hypergravity conditions.  相似文献   

4.
Path integration or 'dead reckoning' is the ability to keep track of relative position using self-motion signals that convey information about speed and direction of movement. Most animal species, including humans, exhibit some degree of path integration capability and neurophysiological studies have demonstrated that self-motion signals are sufficient to update internal representations of both position and orientation. In the present study, human subjects were required to monitor their position or orientation on the basis of unstructured optic flowfields. Trials were conducted at different speeds to examine the accuracy of path integration and rates of random error accumulation, and at two different head azimuths to prevent a confounding strategy of position updating based primarily on tracking changes in the angular declination of distant landmarks with respect to the horizon. Participants integrated the speed of visual motion to update accurately a representation of their position and orientation within the environment. Consistent with the characteristics of real-world path integration, errors accumulated linearly with the magnitude of position and orientation estimation. We conclude that coherent optic flowfields provide a sufficient basis for humans to keep track of their position and orientation relative to remembered landmarks.  相似文献   

5.
For several years, the “BNM-Laboratoire Primaire du Temps et des Fréquences” has worked on a cold atom frequency standard. With a cesium atomic fountain a resonance line width of 700 mHz has been obtained leading to a short-term stability of 2 × 10−13 τ−1/2 down to 2 × 10−15 at 104 s. A first evaluation of the fountain accuracy has been performed resulting in an accuracy of 3 × 10−15, three times better than previously achieved with thermal beams frequency standards. In the atomic fountain, gravity limits the interaction time to ˜1 s, hence the resonance line width to ˜0.5 Hz. A factor of 10 reduction in the line width could be obtained in a micro-gravity environment. The “Centre National d'Etudes Spatiales” (the French space agency), the “BNM-Laboratoire Primaire du Temps et des Fréquences”, the “Laboratoire de l'Horloge Atomique” and the “Laboratoire Kastler Brossel” have set up a collaboration to investigate a space frequency standard using cold atoms: the PHARAO project. A microgravity prototype has been constructed and operated first in the reduced gravity of aircraft parabolic flights in May 1997. It is designed as a transportable frequency standard. The PHARAO frequency standard could be a key element in future space missions in fundamental physics such as SORT (solar orbit relativity test), detection of gravitational waves, or for the realization of a global time scale and a new generation of positioning system.  相似文献   

6.
This study presents two experiments that examine howindividuals learn relative directions betweenlandmarks in a desktop virtual environment. Subjectswere presented snapshot images of different virtualenvironments containing distinguishing landmarks anda road network. Following the presentation of eachvirtual environment, subjects were given a relativedirection test. The relative direction test involvedindicating the direction of hidden landmarks fromdifferent vantage points in the environment. Half ofthese vantage points were presented during thelearning phase, while the other half were novel.Results showed that subjects learned relativedirections between landmarks equally well when sceneswere presented in either a sequential or random order.Furthermore, viewing a configuration of landmarks ina desktop virtual environment from multipleperspectives produced a viewpoint dependentrepresentation in memory. Subjects had significantlygreater response times for new viewing perspectives,as compared to previously viewed scenes. Thisviewpoint dependent representation of the environmentpersisted despite learning under conditions ofspatio-temporal discontinuity and changes to anenvironmental frame of reference.  相似文献   

7.
The eye perceives the length of vertical and horizontal lines with an inherent asymmetry. A vertical line having the same length as a horizontal one is usually perceived to be longer. In this experimental investigation we tested the hypothesis that gravity has a direct role in producing the observed perceptual asymmetry. To this end we performed experiments in weightlessness during long-orbital space flights onboard the MIR station. Subjects performed a psychophysical task in which the length of a visually-presented vertical line was adjusted to match the length of a horizontal reference. On Earth, almost all subjects produce errors in adjusting the length of the vertical line, consistently under-estimating the length of the horizontal reference. The asymmetry of perception of the line lengths persisted in weightlessness. From these results we conclude that the phenomena of asymmetry of perception of the lengths of vertical and horizontal lines is not dependent on gravity, but is instead defined by properties of the system of internal representation. Grant numbers: 99-04-48450.  相似文献   

8.
Although recent studies have brought new insight into the mechanisms of spatial memory and cognitive strategies during navigation, most of these studies have concerned two-dimensional navigation and little is known regarding the problem of three-dimensional (3D) spatial memory. We found previously that memorizing complex 3D-structured corridors was easier with natural self-motion that included only yaw turns, and vertical translations facing the walls at vertical sections. This suggests that when only sideways (yaw) mental rotations had to be performed in order to shift from the experienced egocentric to the allocentric reference frame where recognition was tested, memorization of such corridors was improved. In the present investigation we studied the effect of tilting separately subject's body axis and self-motion's rotation axis relative to gravity. With a computerized 3D reconstruction task of the maze, we examined whether having any single rotation axis was enough to facilitate this reference shift or, if not, what aspect of the terrestrial condition-where visual displacement rotation, gravity and body axes were aligned-led to better performance. Field dependent (FD) and independent (FI) subjects, as determined by the rod and frame test, showed distinct effects of the navigation conditions. The FD group performance was markedly impaired when gravity and body axis were in conflict, independently of the rotation axis, whereas FI performance only slightly worsened when the body was tilted and the rotation axis remained aligned with gravity. Moreover, tilting the body in the control condition only worsened performance for the FD group.  相似文献   

9.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

10.
Reference frames are representations that parse space. In the case of spatial terms, reference frames mediate the mapping of linguistic expressions onto spatial configurations of objects. In the sentence ``The fly is above the cat,' ``above' is defined with respect to a reference frame that is imposed on the cat. Different types of reference frames can be used to define spatial terms, each based on a different source of information. For example, gravity, the orientation of objects in the scene or the orientation of the viewer can all be used to set the orientation of a reference frame. When these reference frames disagree (because the viewer is reclining or because the objects in the scene are overturned), there are competing definitions for the spatial term, resulting in the need for reference frame selection. The purpose of this paper is to review a line of research that examines reference frame selection in the context of spatial language. This work shows that all reference frames are initially active and assign a direction to a spatial term. Moreover, this activation is automatic, and is followed by the selection of a single reference frame, with selection accompanied by inhibition of the non-selected frames. Parallels between reference frame selection in language and in perception and attention are discussed.  相似文献   

11.
王振汉  张立勋  薛峰  陈旭阳 《宇航学报》2022,43(9):1268-1276
针对航天员微重力作业训练系统的重力场补偿控制这一关键技术,进行了理论和实验研究。分析了模拟微重力环境的机理,确定了微重力作业训练系统的总体结构方案,提出了一种基于电流反馈的重力补偿控制及多干扰力补偿控制策略。通过虚拟重力补偿控制实验,验证了在地面环境、动态作业过程中,模拟物体在不同空间重力加速度环境下的运动规律,实现了在重力方向模拟空间环境下物体移动的作业训练效果。研究成果为在地面实现三维作业训练系统的控制奠定了基础。  相似文献   

12.
"Crickets in Space" (CRISP) was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal activation systems. These advantages allowed us to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to microgravity and hypergravity (hg) while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity. The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation by accessory gravity. proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of microgravity or hg-exposure related to the period of neuronal proliferation. Grant numbers: 50WB9553-7.  相似文献   

13.
Aoki H  Ohno R  Yamaguchi T 《Acta Astronautica》2005,56(9-12):1005-1016
In a virtual weightless environment, subjects’ orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations.  相似文献   

14.
This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.  相似文献   

15.
16.
《Acta Astronautica》2007,60(4-7):281-284
The regional lung ventilation depends on the amount and direction of applied gravitational force. This article presents a technique suitable for microgravity condition, providing online information about the local dynamic behavior of the lungs. Using state-differential images measured by electrical impedance tomography (EIT), for every region of interest (ROI) of the lungs a median signal was calculated. For the detection of regional differences in the lung ventilation, local impedance signals were compared with a reference signal, which was the median value over all pixels inside the lungs.We compared both the difference in magnitude and the phase shifts between the ROIs. The phase information was calculated using the Hilbert transform. The technique was tested on five spontaneously breathing subjects.The phase difference proved to be a very sensitive indicator for changes in the regional ventilation during postural changes and therefore changes of the direction of gravitational forces.  相似文献   

17.
This paper describes a computer simulation study that was undertaken to determine how well long-wavelength variations in the Earth's gravitational field can be recovered using data from the DedicatedGravitational Satellite (GRAVSAT) mission. This mission is to consist of two low altitude (160 km) spacecraft in essentially the same orbit but separated in phase by 100–300 km. Geodetic data are measurements of the relative range rate to an accuracy of about 1 μm/s at 4 sec intervals. Specifically, a Bayesian covariance simulation was used to investigate simultaneous recovery of the spacecraft ephemerides and a global distribution of 20° × 20° mean gravity anomaly blocks. Sources of errors considered were tracking station positions, gravitational constant, Earth body tides, tropospheric modeling and measurement noise. It should be noted that this simulation does not include as an error source variations in the gravity field that have a character different from what was modeled. Consequently, this study demonstrates the potential of the low-low system as configured to recover the long-wavelength variations in the gravity field.Using only one days worth of data, the mean of the standard deviations of the 162 20° × 20° gravity anomaly blocks is about 1 μgal. For a 6 month mission (assuming a reduction proportional to the square root of the data intervals) this projects to < 0.1 μgal. Because of the potential of increased measurement precision at shorter separation distances, and the relative insensitivity of the recovery process to separation distance, it should be possible to recover both long and short wavelength variations with a modest distribution of separation distances tailored primarily to the short wavelength recovery. Effects of the uncertainty in the gravitational constant and Love's numbers are negligible. In a simulation not reported on, increasing the altitude of the orbit to 200 km from 150 km, degraded, as expected, the accuracy of the recovered parameters by only 7%.  相似文献   

18.
中国正在开展月球探测活动,下一步将发射月球着陆器并实现月面软着陆。为确保着陆器在月面着陆时的稳定性和可靠性,发射前需在地球表面进行着陆冲击试验。对会影响月球着陆器着陆性能的月貌和月壤进行了详细的叙述,以便在试验过程中进行相应环境特征的模拟。用图表详尽阐述了三种月球重力场模拟器的原理和装置,并对各自的优缺点进行了评述。根据试验模型的不同,将月球着陆器着陆冲击试验分为原尺寸试验(模拟的月球重力场下)和1/6模型试验(地球重力场下)两类,分别介绍了两类模型的结构以及试验模型与着陆器原型机之间缩放关系。分别给出了原尺寸试验和1/6模型试验的试验平台和试验步骤,以及初始试验参数的给定方法。根据试验研究的需要以及月球探测器在月球表面着陆时的真实情况,给出了在地球上进行着陆模式模拟的方法。研究表明两种试验结果之间有良好的一致性,但是这两种试验的花费很高,且对试验场地有较高的要求。再者,由于在试验中对月壤没有太好的模拟方法,试验数据与真实着陆时数据存在一定差异。  相似文献   

19.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

20.
Tafforin C 《Acta Astronautica》1996,38(12):963-971
The first ethological studies of astronauts' adaptation to microgravity dealt with the behavioral strategies observed during short-term space missions. No attempts had however been made to consider the initial moments of adaptation dynamics, when the subject is first submitted to conditions allowing body orientations in the full three dimensions of space. The present experimental approach was both longitudinal and transversal. It consisted of analysing, during a goal-directed orientation task in parabolic flight, the orientation behavior of 12 subjects with a past experience of 0, 30 or more than 300 parabolas. During each microgravity phase, the subjects were asked to orientate their bodies and touch, with the dominant hand, four coloured targets arranged inside the aircraft.

Results showed that for inexperienced subjects, the time between two target contacts was longer than experienced subjects. They often failed to reach all targets in the series during the first parabolas. They showed right-left confusion and a preference for the “up-down” vertical body orientation. Their performance, described by the efficiency of orientation in all three dimensions, improved over time and according to the level of experience. The results are discussed for the spontaneous, preliminary and integrative stages of adaptation, emphasizing new relationships between the body references and those of the surroundings. Such experiences lead the subject to develop a new mental representation of space.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号