首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and lambda-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z < or = 4) the cross section decreases with increasing energy. For ions of Z = 10, it is nearly independent of energy. For heavier ions (Z > or = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a "mutagenic belt" inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.  相似文献   

3.
The peculiarities and mechanisms of the mutagenic action of gamma-rays and heavy ions on bacterial cells have been investigated. Direct mutations in the lac-operon of E. coli in wild type cells and repair deficient strains have been detected. Furthermore, the induction of revertants in Salmonella tester strains was measured. It was found that the mutation rate was a linear-quadratic function of dose in the case of both gamma-rays and heavy ions with LET up to 200 keV/micrometer. The relative biological effectiveness (RBE) increased with LET up to 20 keV/micrometer. Low mutation rates were observed in repair deficient mutants with a block of SOS-induction. The induction of SOS-repair by ionizing radiation has been investigated by means of the "SOS-chromotest" and lambda-prophage induction. It was shown that the intensity of the SOS-induction in E. coli increased with increasing LET up to 40-60 keV/micrometer.  相似文献   

4.
Mutagenic effects of heavy ion radiation in plants.   总被引:5,自引:0,他引:5  
Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.  相似文献   

5.
On December 21-st, 1981, at 18.35 hours UT from the territory of the USSR (coordinates - 49°N/L 2/) in implementation of scientific objectives and in accordance with the ‘INTERCOSMOS’ Programme, there was launched the heavy geophysical rocket ‘VERTICAL-10’. The scientific payload included a low-energy two-channel spectrometer for measuring the differential flows of electrons and protons within the energy range 0.1 to 10 keV, covered by 15 exponentially distributed energy levels.  相似文献   

6.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.  相似文献   

7.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

8.
Mutation induction by high linear energy transfer [LET] alpha particles and gamma-rays was scored in the human hamster hybrid [AL] cells. Southern blotting technique was used to analyse the molecular changes in the DNA from both the HGPRT- and S1- mutants. Dose dependent mutagenesis in the AL cells irradiated with the charged particles was higher by almost 20 fold at the S1 than the corresponding HGPRT locus. Southern analysis of the mutants induced by the high LET particles showed mostly multilocus deletion at both the HGPRT and S1 genes.  相似文献   

9.
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase.  相似文献   

10.
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.  相似文献   

11.
It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing (Kelland et al., 1988; Radford, 1986). We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/micrometer and were even smaller than unity for the LET region greater than 300 keV/micrometer. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/micrometer, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main muse of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.  相似文献   

12.
The aim of this research was to determine the biological effectiveness for early and delayed effects of high energy, high linear energy transfer (LET) charged particles. Survival and delayed reproductive death were measured in AG1522 human fibroblast cells exposed to Fe-ion beams of energies between 0.2 and 1 GeV/n, 0.97 GeV/n Ti-ion and 0.49 GeV/n Si-ion beams. The cells were irradiated at the HIMAC accelerator in Chiba, Japan (0.2 and 0.5 GeV/n Fe and 0.49 GeV/n Si) and at the NASA Space Radiation Laboratory in Brookhaven, USA (1 GeV/n Fe and 0.97 GeV/n Ti ions). The dose-effect curves were measured in the dose range between 0.25 and 2 Gy. For comparison cells were exposed to 60Co gamma rays. Analysis of the dose-effect curves show that all the heavy ion beams induce inactivation and delayed reproductive death more effectively than 60Co gamma rays. The only exception is the 0.2 GeV/n Fe-ion beam at low doses. The progeny of the irradiated cells show delayed damage in the form of reproductive death with all the heavy ion beams with the 1 GeV/n Fe-ion beam being the most effective. The relative biological effectiveness at low doses of the iron beams is highest for LET values between 140 and 200 keV/micrometers with values of 1.6 and 3 for early and delayed reproductive death, respectively. Analysis of the fluence-effect curves shows that the cross-sections for early and delayed inactivation increase with increasing LET up to 442 keV/micrometers.  相似文献   

13.
Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-l0lGy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of 'degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, 'beta astrocytes'.  相似文献   

14.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

15.
Two assay were employed to study the induction and repair of DNA double-strand breaks (dsbs) in normal human fibroblasts after exposure to particle radiation covering an LET range from 1 to 350 keV/micrometer. The hybridization assay allows measurement of absolute induction frequencies in defined regions of the genome and quantitates rejoining of correct DNA ends while the FAR assay determines all rejoining events, correct and incorrect. Assuming Poisson statistics for the number of breaks per DNA fragment investigated, and thus neglecting any clustering of breaks, we found the induction rate to decrease with increasing LET of the particles. RBE values compared to 225 kVp X-rays dropped to 0.48 for the highest LETs. Repair studies of X-ray-induced dsbs showed that almost all breaks (>95%) are rejoined after incubation times of 24 h while the frequency for correct rejoining is only 70%. Thus about 25% of the initially induced breaks are rejoined by the connection of incorrect DNA ends. Postirradiation incubation after particle irradiation showed less efficient total rejoining with increasing LET and an impaired ability for correct rejoining. The frequency for rejoining of incorrect DNA ends was found to be independent of LET. The possible biological significance of the different rejoining events is discussed.  相似文献   

16.
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered.  相似文献   

17.
18.
Confluent human fibroblast cells were exposed to 6 Gy gamma-rays or 200 MeV/nucleon Fe ions at 0.7 or 3 Gy. The cells were allowed to repair for 24 hours after exposure and chromosomes were collected using a premature chromosome condensation technique with calyculin-A. Chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results showed that both doses of the Fe ions produced higher ratios of complex to simple exchanges and lower ratio of complete to incomplete exchanges than the 6 Gy gamma-exposure. The ratios of aberration yields were similar for the two doses of Fe ions. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating this is the maximum number of chromosome domains traversed by a single Fe ion track.  相似文献   

19.
During short-term microgravity in sounding rocket experiments (6 min.) the cytoskeleton undergoes changes and therefore it is possible that cell processes which are dependent on the structure and function of the cytoskeleton are influenced. A cell fusion experiment, initiated by a short electric pulse, was chosen as a model experiment for this sounding rocket experiment. Confluent monolayers of primary human skin fibroblasts, grown on coverslips, were mounted between two electrodes (distance 0.5 cm) and fused by discharging a capacitor (68 micro F; 250 V; 10 msec) in a low conductive medium. During a microgravity experiment in which nearly all the requirements for an optimal result were met (only the recovery of the payload was delayed) results were found that indicated that microgravity during 6 minutes did not influence cell fusion since the percentage of fused products did not change during microgravity. Within the limits of discrimination using morphological assays microgravity has no influence on the actin/cortical cytoskeleton just after electrofusion.  相似文献   

20.
受流体驱动高速运动的机构,受阻后突然停止将导致零件变形甚至断裂.为得到缓冲结构的最佳方案,运用正交试验法从27种设计方案中确定了9个试验样本,并通过流固耦合与非线性有限元法对其高速运动与冲击过程进行了仿真分析.在此基础上,应用改进的BP(Error Back-Propagation)网络训练得到吸能结构参数与零件应变能的非线性映射关系.通过优化,得到了最佳方案,明显提高了方案优选效率.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号