首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
利用地面宇宙线强度变化预报地磁暴方法初步研究   总被引:1,自引:0,他引:1  
分析了Nagoya宇宙线闪烁体望远镜探测数据的变化特点,定性地探讨了CME可能引起的地面宇宙线的变化特征,通过实例证实了地面宇宙线通量的异常波动是地磁暴发生的重要先兆特征,并且将8 h内宇宙线通量与该时间段内平均通量的偏差D8(t)参数应用到宇宙线数据分析中.通过数据分析与讨论,认为D8(t)参数达到一定阈值是地磁暴的重要先兆特征,但不是充分条件,虚假信号仍占多数;D8(t)参数与太阳质子事件探测结果相结合,对于大地磁暴的预报有较好的效果.  相似文献   

2.
用银河宇宙线判定几个引起特大磁暴CME的运动方向   总被引:1,自引:0,他引:1  
利用位于南北极尖区位置的McMurdo和Thule台站的宇宙线强度的观测数据,分析了几个引起特大磁暴CME的来向.分析结果表明,所选的与4个特大磁暴相关的CME基本是朝正对磁层顶的方向运动并与磁层作用的.通过对引起第23周两个特大磁暴的CME特征分析对照,发现CME的来向是影响磁暴强弱的一个因素.同样条件下,运动方向偏向地球一侧的CME引起的磁暴比正对地球的CME引起的磁暴要弱.  相似文献   

3.
利用宇宙线中子探测数据定性分析了地面宇宙线多台站之间的相互联系以及大磁暴与宇宙线之间的响应关系. 以Irkutsk和Oulu宇宙线台站为例, 运用小波去噪技术提高数据的稳定性. 结果表明, 相同世界时条件下, 两站宇宙线通量相关性在事件发生时较高; 而相同地方时条件下, 相关性则在平静期较高. 进一步采用相同地方时条件对不同宇宙线台站的通量在平静期和扰动期的相对变化进行分析, 选取2004年7月强地磁暴典型事例进行直观分析, 发现大地磁暴前Irkutsk和Oulu台站的宇宙线相对通量发生明显差异, 可以尝试作为强地磁暴宇宙线先兆特征. 通过对2001年3月至2005年5月的强磁暴和中强磁暴进行统计, 得到与强地磁暴相关的适当宇宙线相对差异阈值. 将得到的阈值对2005年9月至2011年12月所有强磁暴及中强磁暴进行验证, 总成功率达到87.5%, 误报率为35.7%, 结果较好.  相似文献   

4.
1997年1月7-10日广州台站银河宇宙线强度变化特征   总被引:1,自引:1,他引:1  
1997年1月7-10日的CME事件虽然只引起了中等强度的磁暴,但引起了很强的地球物理效应,这次CME事件影响了银河宇宙线的强度。本文给出了CME在行星际传播期间广州多方向闪烁望远镜观测台站的几个方向记录的银河宇宙线强度变化的特征,并做了简要的分析。  相似文献   

5.
分析了日本Nagoya 宇宙线闪烁体望远镜30°, 49°, 64° 倾角的东、西、南、北方向探测数据的变化特点, 运用小波分析方法定性地探讨了磁暴前后宇宙线南北、东西各向异性的变化特征. 研究发现, 当发 生大地磁暴时, 地面宇宙线强度的各向异性特征将发生非常大的变化, 这种变化一般在磁暴发生前10~20 h就开始出现. 当描述这种各向异性特征的各向异性指数的小波系数变化达到一定阈值时, 就可能有大地磁暴发生.  相似文献   

6.
第1期两冕流间cME事件数值模拟的改进.……叶占银魏奉思王赤冯学尚守暴内激波的速度变化…,....................……陈黎吴枚屈进禄用银河宇宙线判定几个引起特大磁暴CME的运动方向..........……乐贵明2000年7月空间天气大事件对地磁场的影响............................……太阳黑子数及助指数周期变化特征的小波分析........……苗娟田剑华神舟3号大气成分探测器探测结果—2002年4月磁暴期间大气成分的异常变化 秦国泰邱时彦贺爱卿祝义强孙丽琳林宪文李宏徐学培基于改进的NSGA一R算法的区域覆盖卫星星座优化.....……阎志伟田着单…  相似文献   

7.
宇宙线强度变化与磁扰K类型   总被引:2,自引:1,他引:2  
本文把1966—1983年期间发生的679个地磁暴进行了分类,利用统计方法分析了各类磁暴发生前后宇宙线强度的变化特征.突发急始脉冲发生后,宇宙线强度没有出现显著的变化;缓始型暴发生后,宇宙线强度出现Forbush下降,但下降幅度很小;急始型暴发生后,宇宙线强度出现十分明显的Forbush下降.当把急始型暴按K指数大小和持续时间分为5种类型,发现它们伴随的宇宙线Forbush下降是不一样的,其下降幅度随磁暴的增强而加大,下降的速率随磁暴的增强而加快,扰动的持续时间随磁暴的减弱而增加.   相似文献   

8.
采用中国中地球轨道卫星在太阳活动下降相到上升相的高能电子探测数据, 首次分析研究了该轨道高能电子环境的空间分布、通量强度、时序变化以及对地磁暴活动响应的特性. 结果表明, 中地球轨道高能电子的空间分布 范围稳定, 电子通量强度随能量升高而下降; 中地球轨道高能电子环境是 一个在不同时间尺度上剧烈变化的动态系统, 该系统可能间歇性地出现27天重 现性变化, 该系统变化受地磁暴事件调制, 但其对磁暴的响应呈现出非线性特征.  相似文献   

9.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.  相似文献   

10.
用Morlet小波变换对Oulu台站和Apatity台站(主要是Apatity台站)1998-2002年间宇宙线静日和地磁暴前的地面宇宙线强度变化特征进行分析,得到:在宇宙线静日期间普遍存在准24 h周期变化特征,并且在当地时间0200,1400左右分别出现最小值和最大值;对12个例子的分析可以看到地面宇宙线强度在地磁暴之前1-2天均出现了不同于宇宙线静日期间变化特征,或有小尺度周期出现,或周期变化完全消失,或有异常24h周期变化,这种变化特征在一定程度上可作为地磁预报的先兆特征之一.  相似文献   

11.
We analyze the cosmic-ray anisotropy observed by a prototype network of muon detectors during geomagnetic storms associated with coronal mass ejections (CMEs). The network currently consists of multidirectional surface muon detectors at Nagoya (Japan) and Hobart (Australia), together with a prototype detector at São Martinho (Brazil) which has been in operation since March, 2001. In this report, we analyze the anisotropy recorded in both the muon detector and neutron monitor (the Spaceship Earth) networks and find significant enhancements of cosmic-ray anisotropy during geomagnetic storms. Following the analysis by Bieber and Evenson [Bieber, J.W., Evenson, P. CME geometry in relation to cosmic ray anisotropy. Geophys. Res. Lett. 25 (1998) 2955–2958] for the neutron monitor data at 10 GeV, we also derive cosmic-ray density gradients from muon data at higher-energy (50 GeV), possibly reflecting the larger-scale geometry of CMEs causing geomagnetic storms. We particularly find in some events the anisotropy enhancement clearly starting prior to the storm onset in both the muon and neutron data. This is the first result of the CME-geometry derived from simultaneous observations of the anisotropy with networks of multidirectional muon detectors and neutron monitors.  相似文献   

12.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

13.
2000年7月空间大事件对地磁场产生了巨大影响,7月15日至18日发生大磁暴(K=9).磁暴为急始型,在我国地区初相期变幅有200-300 nT,主相最大幅度有500-600nT,为多年来所罕见.在行星际磁场Bz由北向转向南向时,磁暴主相开始;南向分量达到最大值后大约2 h,地磁H分量达到最小值,恢复相开始.并且,这次磁暴与太阳风也存在一定的对应关系.  相似文献   

14.
A single channel cosmic ray muon detector was constructed and installed in Riyadh, central Saudi Arabia, for studying the variations in the cosmic ray (CR) muon flux. The detector has been in operation since July 2002. The recorded data correspond to muons that primarily have energies between 10 and 20 GeV. The detector will be used to continuously measure the intensity of the muon components of the cosmic rays, exploring its variations and possible correlations with environment parameters. The technical aspects of this detector will be presented. Some results obtained by the detector so far will be given. These include the modulation of the CR flux on different time scales (diurnal, 27-day, and long-term variations). Additionally, the effect of a severe dust storm on the muon count rate was investigated.  相似文献   

15.
地磁急始年发生数周期特征的小波分析   总被引:7,自引:1,他引:6  
采用小波分析方法分析了急始年发生数的时间序列的周期特征,并对急始发生数的特征与太阳黑子相对数的特征进行了简要的对照分析,分析结果表明,急始发生数的周期规律与太阳黑子相对数的周期规律是有差异的。还进行了太阳黑子相对数与急始数的相关性,太阳黑子相对数与急始磁暴的相关性研究,分析结果表明它们之间显著相关。还对急始数与急始磁暴数以及其他的一些参数之间的相关性进行了分析,最后对分析结果进行了讨论。  相似文献   

16.
1998年5月空间天气大事件的地磁场响应   总被引:4,自引:1,他引:4  
地磁场与1998年5月空间大事件相对应的是5月1日至16日发生的大磁暴(k=8)。磁暴主相开始的几个小时伴随有丰富的Pc型地磁脉动,包括P c2,Pc3,Pc4等。在增暴的恢复相,甚至还有Pc5巨型脉动,在行星标磁场Bz由北向转向南向时,磁暴主相开始;南向分量达到最大值后大约2小时,地磁H分量达到最小值,恢复相开始,并且,这次磁暴与太阳风电场也存在一定的对应关系。  相似文献   

17.
This study examines the occurrences rate of geomagnetic storms during the solar cycles (SCs) 20–24. It also investigates the solar sources at SCs 23 and 24. The Disturbed storm time (Dst) and Sunspot Number (SSN) data were used in the study. The study establishes that the magnitude of the rate of occurrences of geomagnetic storms is higher (lower) at the descending phases (minimum phases) of solar cycle. It as well reveals that severe and extreme geomagnetic storms (Dst < -250 nT) seldom occur at low solar activity but at very high solar activity and are mostly associated with coronal mass ejections (CMEs) when occurred. Storms caused by CME + CH-HSSW are more prominent during the descending phase than any other phase of the solar cycle. Solar minimum features more CH-HSSW- associated storms than any other phase. It was also revealed that all high intensity geomagnetic storms (strong, severe and extreme) are mostly associated with CMEs. However, CH-HSSW can occasionally generate strong storms during solar minimum. The results have proven that CMEs are the leading cause of geomagnetic storms at the ascending, maximum and the descending phases of the cycles 23 and 24 followed by CME + CH-HSSW. The results from this study indicate that the rate of occurrence of geomagnetic storms could be predicted in SC phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号