首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional, regulatory and indicator features of microorganisms in development and functioning of the systems and sustaining stability of three man-made ecosystem types has been studied. 1) The functional (metabolic) feature was studied in aquatic ecosystems of biological treatment of sewage waters for the reducer component. 2) The regulatory feature of bacteria for plants (producer component) was studied in simple terrestrial systems "wheat plants-rhizospheric microorganisms-artificial soil" where the behavior of the system varied with activity of the microbial component. For example with atmospheric carbon dioxide content elevated microbes promote intensification of photosynthesis processes, without binding the carbon in the plant biomass. 3) The indicator feature for the humans (consumer component) was studied in Life Support Systems (LSS). High sensitivity of human microflora to system conditions allowed its use as an indicator of the state of both system components and the entire ecosystem. Grant numbers: N99-04-96017, N15.  相似文献   

2.
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of "Bios-3" life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human-metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide icon a quartz reactor at the temperature of 80 degrees C controlled electromagnetic field is proposed.  相似文献   

3.
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.  相似文献   

4.
The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS.  相似文献   

5.
Any attempt to create LSS for practical applications must take into account the possibility of castastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.  相似文献   

6.
One of the key problems of long-term space missions is limited service life of units. The only exceptions are biological components of biological Life Support Systems--higher plants or microorganisms. These components are capable of self-restoration: after complete disintegration, they can appear again from seeds or spores. The estimate of failure intensity of BLSS regeneration component includes: a number of self-sustained sections of the regeneration component; permissible boost (how many times can productivity of a component be increased); time required to repair (restore) a component; the crew existence time, when all LSS regeneration components fail; failure rate of one section of a regeneration component. Evaluations show that for hydrogen-oxidizing bacteria and micro-algae very high reliability is achieved even for one or two sections. In the case of higher plants (due to low rate of self-restoration) bio-regenerative module has to be divided into 10 self-sustained sections operating simultaneously. These measures can decrease the probability of catastrophe by a factor of 10(6).  相似文献   

7.
Ground-based experiments at RF SSC-IBMP RAS (State Science Center of Russian Federation--Institute of Biomedical Problems of Russian Academia of Science) were aimed at overall studies of a human-unicellular algae-mineralization LSS (life support system) model. The system was 15 m3 in volume. It contained 45 L of algal suspension with a dry substance density of 10-12 g per liter; water volume, including the algal suspension, was 59 L. More sophisticated model systems with partial substitution of unicellular algae with higher plates (crop area of 15 m2) were tested in three experiments from 1.5 to 2 months in duration. The experiments demonstrated that LSS employing the unicellular algae play not only a macrofunction (regeneration of atmosphere and water) but also carry some other functions (purification of atmosphere, formation of microbial cenosis etc.) providing an adequate human environment. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS redundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in parallel sharing the function of regeneration of the human environment. In case of failure or a sharp deterioration in performance of one system the other will, by way of redundancy, increase its throughput to make up for the loss. This LSS design will enable simultaneous handling of a number of critical problems including adequate satisfaction of human environmental needs.  相似文献   

8.
Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.  相似文献   

9.
Potato (Solanum tuberosum L.) cv. 'Norland', vegetative growth and tuber productivity grown in the porous water and nutrient delivery system (PTNDS) developed by the Wisconsin Center for Space Automation and Robotics were compared with the vegetative growth and tuber productivity of plants grown in a peat:vermiculite potting mixture (PT/VR). The plants were grown at 12, 16, and 24-h light periods, 18 degrees C constant temperature, 70% relative humidity, and 300 micromol m-2 s-1 photosynthetic photon flux. Canopy height of plants grown in the PT/VR system was taller than that of plants grown in the PTNDS system. Canopy height differences were greatest when the plants were grown under a 24-h photoperiod. Leaf and stem dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24-h photoperiod, leaf and stem dry masses of plants grown in the PT/VR system were more than 3 times those of plants grown in the PTNDS system. Tuber dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24 h-photoperiod, tuber dry weights of plants grown in the PT/VR system were more than twice those of plants grown in the PTNDS system. A slightly higher harvest index (ratio of tuber weight to leaf plus stem weight) was noted for the plants grown in the PTNDS than for the plants grown in the PT/VR system. Plants grown in the PTNDS system at the 24-h photoperiod matured earlier than plants grown at this photoperiod in the PT/VR system. Vegetative growth and tuber productivity of plants grown under the 16-h photoperiod generally were intermediate to those noted for plants grown under the 12 and 24-h photoperiods. These results indicate that potato plants grown in a PTNDS system may require less plant growing volume, mature in a shorter time, and likely produce more tubers per unit area compared with plants grown in the PT/VR system. These plant characteristics are a distinct advantage for a plant growing unit of a CELSS.  相似文献   

10.
Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper.  相似文献   

11.
For systematic human Mars exploration, meeting crew safety requirements, it seems perspective to assemble into a spacecraft: an electrical rocket, a well-shielded long-term life support system, and a manipulator-robots operating in combined "presence effect" and "master-slave" mode. The electrical spacecraft would carry humans to the orbit of Mars, providing short distance (and low signal time delay) between operator and robot-manipulators, which are landed on the surface of the planet. Long-term hybrid biological and physical/chemical LSS could provide environment supporting human health and well being. Robot-manipulators operating in "presence effect" and "master-slave" mode exclude necessity of human landing on Martian surface decreasing the level of risk for crew. Since crewmen would not have direct contact with the Martian environment then the problem of mutual biological protection is essentially reduced. Lightweight robot-manipulators, without heavy life support systems and without the necessity of returning to the mother vessel, could be sent as scouts to different places on the planet surface, scanning the most interesting for exobiological research site. Some approximate estimations of electric spacecraft, long-term hybrid LSS, radiation protection and mission parameters are conducted and discussed.  相似文献   

12.
The problem of interaction between man and microorganisms in closed habitats is an inextricable part of the whole problem of co-existence between macro- and microorganisms. Concerning the support of human life in closed habitat, we can, conventionally, divide microorganisms, acting in life support system (LSS) into three groups: useful, neutral and harmful. The tasks, for human beings for optimal coexistence with microhabitants seem to be trivial: (1) to increase the activity of useful forms, (2) decrease the activity harmful forms, (3) not allow the neutral forms to become the harmful ones and even to help them to gain useful activity. The task of efficient management and control of microbial population's development in LSS highly depends on mission duration. As for short-term missions without recycling, the proper hygienic procedures are developed. For longer missions, the probability of transformation of the neutral forms into the harmful ones is becoming more dangerous. The LSS for long-term missions are to use cycling-recycling systems, including system with biological recycling. In these systems, microbial populations as regenerative link should be useful and active agents. Some problems of microbial populations control and management are discussed in the paper.  相似文献   

13.
The development of efficient and safe Life Support Systems is one of the key drivers of the Global Solar System Exploration efforts. For each task performed by Life Support Systems (LSS) a great multitude of sub-system concepts exist and the challenge is to find the optimal combination of sub-systems for a given mission scenario. On a sub-system level the Equivalent Systems Mass (ESM) trade study approach is well suited to effectively compare sub-system options. On a system level in addition to ESM data time dependent sub-system performances within an overall system must be addressed. Criteria such as system stability, controllability and effectiveness must be considered in order to be able to assess the dynamic robustness of systems designed to the averages. In an effort to establish a dynamic simulation environment for this type of LSS optimizations the “Virtual Habitat” tool (V-HAB) is being developed at the Technical University of Munich (TUM). This paper introduces the most important part of the Virtual Habitat simulation, which is the human model.  相似文献   

14.
To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H2O2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H2O2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole.  相似文献   

15.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

16.
Plants in experiments on "man-higher plants" closed ecosystem (CES) have been demonstrated to have inhibited growth and reduced productivity due to three basic factors: prolonged usage of a permanent nutrient solution introduction into the nutrient medium of intra-system gray water, and closure of the system. Gray water was detrimental to plants the longer the nutrient solution was used. However, higher plant growth was mostly affected by the gaseous composition of the CES atmosphere, through accumulation of volatile substances.  相似文献   

17.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

18.
The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of "direct" and "indirect" effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common Insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed "directly" by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected "indirectly" by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.  相似文献   

19.
The C.E.B.A.S. MINI-MODULE is the miniaturized space flight version of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.). It fits into a large middeck locker tray and is scheduled to be flown in the STS 85 and in the NEUROLAB missions. Its volume is about 9 liters and it consists of two animal tanks, a plant cultivator, and a bacteria filter in a monolithic design. An external sensor unit is connected to a data acquisition/control unit. The system integrates its own biological life support. The CO2 exhaled by the consumers (fishes, snails, microorganisms) is assimilated by water plants (Ceratophyllum demersum) which provide them with oxygen. The products of biomass degradation and excretion (mainly ammonia ions) are converted by bacteria into nitrite and nitrate. The latter is taken up by the plants as a nitrogen source together with other ions like phosphate. The plants convert light energy into chemical energy and their illumination is regulated via the oxygen concentration in the water by the control unit. In ground laboratory tests the system exhibited biological stability up to three month. The buffer capacity of the biological filter system is high enough to eliminate the degradation products of about one half of the dead animal biomass as shown in a "crash test". A test series using the laboratory model of the flight hardware demonstrated the biological stability and technical reliability with mission-identical loading and test duration. A comprehensive biological research program is established for the C.E.B.A.S. MINI-MODULE in which five German and three U.S.-American universities as well as the Russian Academy of Sciences are involved.  相似文献   

20.
This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号