首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Murine marrow stem cells assayed with the spleen colony assay have been shown to be largely in a noncycling state, Go. In the unirradiated animal where these spleen-colony forming units (CFUs) transit normally between a non-proliferative state and active proliferation, exposure to a sufficient dose of ionizing radiation increases the frequency (probability) of this transition. For low-LET irradiation, marrow stem cells are not induced into cycle until a threshold dose is achieved. This dose appears to be in the range 50 to 100 cGy, inducing proliferation in an all-or-nothing manner. For irradiation with heavy charged-particles, however, the threshold dose is dependent on mass and energy. Irradiation with particles of sufficient mass and energy stimulates active proliferation even at the smallest doses tested, 5 cGy. Further, this response does not appear to result from an all-or-nothing effect. Rather, individual animals with intermediate levels of stem cell cycling have been observed. These data support the notion that locally controlled hemopoiesis can be affected by local deposition of radiation damage.  相似文献   

2.
Mutagenic effects of heavy ion radiation in plants.   总被引:5,自引:0,他引:5  
Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.  相似文献   

3.
A general outline of the symposium titled "Mechanisms underlying cellular radiosensitivity and R.B.E." will be given in the introduction. The essential topics of molecular radiation biology are described with respect to the damage, repair and mutagenesis caused by high-LET irradiation to cellular DNA. The importance of clustered DNA lesions (locally multiply damaged sites) formed in vivo is discussed. This symposium is devoted to the mechanisms of the biological effects of radiation with high LET, especially with regard to the effects of heavy ions and neutrons which may cause possible risks in space flight, (e.g. carcinogenesis and mutagenesis). Detailed understanding of these risks, however, demands knowledge of the molecular mechanisms involved in the biological effects of high-LET radiations. Thus, it was the organizers' idea to hold a symposium dealing with primary physical and chemical events caused in cellular deoxyribonucleoproteins by densely-ionizing radiations and to relate them to track structures and energy transfer processes. The mechanisms of DNA damage were regarded from different points of view including those considering DNA repair and mutagenesis. Problems associated with cell survival and radiation protection were discussed as well. Our knowledge of the molecular mechanisms of high-LET radiation actions, however, is limited compared to what we know about low-LET radiation effects (e.g. from gamma-rays or X-rays). To emphasize this statement, I would like to summarize briefly the open questions in molecular radiation biology, what we know already about low-LET effects and what is lacking describing the effect of high-LET radiation.  相似文献   

4.
Radiation cataract, a non-stochastic effect on the lens, is readily amenable to non-invasive analysis. Thus, it provides the means to assess radiation risk in space and for long-term monitoring of those who frequent that environment. The importance of such evaluations are underscored by the uncertainties associated with the assignment of quality factors for the effects of heavy charged particles constituting cosmic and solar radiation. Experimental studies were conducted using albino rats to evaluate the cataractogenic potential of 570 MeV/amu Argon ions administered as both single and protracted doses. The cataract studies and investigations of quantitative cytopathological changes associated with them indicate that as the dose of heavy particles decreases, the relative biological effectiveness, compared to X rays, increases. Fractionating the exposures not only failed to reduce the cataractogenic effect but caused a dose-dependent enhancement in the time of onset of opacification. Cytopathologically, the damage caused by heavy particles, when compared to low-LET radiation was found to be quantitatively dissimilar but qualitatively identical. In addition, damage which might be consistent with microlesions was not evident. The data indicates that as regards the cataractogenic potential of heavy particles at low doses an assignment of a Quality Factor (QF) of at least 40 may be in order.  相似文献   

5.
A theoretical approach to the understanding of the biochemical mechanisms of indirect action of ionizing radiation on SV40 DNA in aqueous solution is presented. The extent of OH attack on the sugar moiety and bases has been calculated. A realistic model for the DNA (in B form) based on available X-ray diffraction data is used and specific reaction sites for the OH radicals are obtained. A Monte Carlo scheme is used to follow the diffusion and reaction of the OH radicals. Effects of track structure have been considered and the single strand break D37 values for 14 MeV electrons (low-LET) and 670 MeV/u and 40 MeV/u neon particles are presented. Calculated results are in agreement with available experimental data. It has been found that regardless of the qualities of radiation, 80% of the OH attack on DNA is on the bases and 20% is on the deoxyribose. From probability considerations only, it appears that the number of double strand breaks varies linearly with dose.  相似文献   

6.
Crews of space missions are exposed to a mixed radiation field, including sparsely and densely ionizing radiation. To determine the biological effectiveness of mixed high-/low-LET radiation fields, mammalian cells were exposed in vitro simultaneously to X-rays and heavy ions, accelerated at the HIMAC accelerator. X-ray doses ranged from 1 to 11 Gy. At the same time, cells were exposed to either 40Ar (550 MeV/n, 86 keV/micrometers), 28Si (100 MeV/n, 150 keV/micrometers), or 56Fe (115 MeV/n, 442 keV/micrometers) ions. Survival was measured in hamster V79 fibroblasts. Structural aberrations in chromosome 2 were measured by chemical-induced premature chromosome condensation combined with fluorescence in situ hybridization in isolated human lymphocytes. For argon and silicon experiments, measured damage in the mixed radiation field was consistent with the value expected using an additive function for low- and high-LET separated data. A small deviation from a simple additive function is observed with very high-LET iron ions combined to X-rays.  相似文献   

7.
Estimation of exposure due to environmental and other sources of radiations of high-LET and low-LET is of interest in radiobiology and radiation protection for risk assessment. To account for the differences in effectiveness of different types of radiations various parameters have been used. However, the relative inadequacy of the commonly used parameters, including dose, fluence, linear energy transfer, lineal energy, specific energy and quality factor, has been made manifest by the biological importance of the microscopic track structure and primary modes of interaction. Monte Carlo track structure simulations have been used to calculate the frequency of energy deposition by radiations of high- and low-LET in target sizes similar to DNA and higher order genomic structure. Tracks of monoenergetic heavy ions and electrons were constructed by following the molecular interaction-by-interaction histories of the particles down to 10 eV. Subsequently, geometrical models of these assumed biological targets were randomly exposed to the radiation tracks and the frequency of energy depositions obtained were normalized to unit dose in unit density liquid water (l0(3) kg m-3). From these data and a more sophisticated model of the DNA, absolute yields of both single- and double-strand breaks expressed in number of breaks per dalton per Gray were obtained and compared with the measured yields. The relative biological effectiveness (RBE) for energy depositions in cylindrical targets has been calculated using 100 keV electrons as the reference radiation assuming the electron track-ends contribution is similar to that in 250 kV X-ray or Co60 gamma-ray irradiations.  相似文献   

8.
The redox properties of irradiated liquid and frozen H2O, NH3 and H2O/NH3 mixtures at 298 K and 77 K, resp., towards some simple organic molecules have been checked by injecting carrierfree 11C atoms and analyzing their chemical state by means of radiochromatography. The reactions and the stability of organic products versus radiation dose (in this study by MeV protons) depend on temperature, phase state, mobility of radicals, their concentration and reactivity. Especially dangerous are the reactive OH and O2H radicals which oxidize organic material to inorganic CO2. Highest stability has been found at low temperatures (solid state, reduced mobility of radicals) and for systems containing H-donors (H2O/NH3 mixtures), which reduce the concentration of oxidizing radicals. The fact that many bodies in space consist of H2O-ice with NH3 and CH4 additives at temperatures between 10 and 150 K is promising in view of the survival of organic matter under high doses of radiation.  相似文献   

9.
Previous studies have shown that the eyes of ATM heterozygous mice exposed to low-LET radiation (X-rays) are significantly more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to high-LET radiation damage.Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 mGy of 1 GeV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per lens epithelial cell nuclear area. Controls consisted of irradiated wildtype as well as unirradiated wildtype and heterozygous mice. Prevalence analyses for stage 0.5–3.0 cataracts indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the ATM gene.The data show that heterozygosity for the ATM gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that ATM heterozygotes in the human population may also be radiosensitive. This may have to be considered in the selection of individuals who will be exposed to both HZE particles and low-LET radiation as they may be predisposed to increased late normal tissue damage.  相似文献   

10.
A major objective of our heavy-ion research is to understand the potential carcinogenic effects of cosmic rays and the mechanisms of radiation-induced cell transformation. During the past several years, we have studied the relative biological effectiveness of heavy ions with various atomic numbers and linear energy transfer on neoplastic cell transformation and the repair of transformation lesions induced by heavy ions in mammalian cells. All of these studies, however, were done with a high dose rate. For risk assessment, it is extremely important to have data on the low-dose-rate effect of heavy ions. Recently, with confluent cultures of the C3H10T1/2 cell line, we have initiated some studies on the low-dose-rate effect of low- and high-LET radiation on cell transformation. For low-LET photons, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at low dose rate. Cultured mammalian cells can repair both subtransformation and potential transformation lesions induced by X rays. The kinetics of potential transformation damage repair is a slow one. No sparing effect, however, was found for high-LET radiation. There was an enhancement of cell transformation for low-dose-rate argon (400 MeV/u; 120 keV/micrometer) and iron particles (600 MeV/u; 200 keV/micrometer). The molecular mechanisms for the enhancement effect is unknown at present.  相似文献   

11.
Gene mutations can be induced by radiation as a result of chromosomal translocations. A biophysical model is developed to estimate the frequency of this type of mutation induced by low-LET radiation. Mutations resulting from translocations are assumed to be formed by misrejoining of two DNA double strand breaks (DSB), one within the gene and one on a different chromosome. The chromosome containing the gene is assumed to occupy a spherical territory and does not overlap spatially with other chromosomes. Misrejoining between two DSB can occur only if the two DSB are closer than an interaction distance at the time of their induction. Applying the model to mutations of the hprt gene induced in G0 human lymphocyte cells by low-LET radiation, it is calculated that mutations resulting from translocations account for about 14% of the total mutations. The value of the interaction distance is determined to be 0.6 micrometers by comparing with the observed frequency of translocations in the X-chromosome.  相似文献   

12.
Free radical formation after heavy-ion bombardment was studied in solid, polycristalline pellets of DNA-constituents by analysing the dose-yield curves and the spectra obtained by ESR-spectroscopy at low (< 100 K) and ambient temperatures. The dose-yield curves were found to correlate with those found after X-irradiation but shifted to higher doses and lower saturation concentrations. The corresponding radical yields (per 100 eV) exhibit values which are one to two orders of magnitudes lower. The structural aspects as revealed from powder ESR-spectra gave a complex inter-relation between substance, LET, dose and irradiation temperature, which is discussed in terms of mechanistic models.  相似文献   

13.
The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/micrometer). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately.  相似文献   

14.
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.  相似文献   

15.
The induction of HPRT-mutations and survival of Chinese hamster cells (line B11ii-FAF28, clone 431) were studied after irradiation by 4He and 12C-ions of various LET (20-360 keV/micrometers), produced by the U-200 heavy ion accelerator. The RBE increases with LET up to the maximum at 100-200 keV/micrometers and then decreases. Cytogenetic analysis was performed on the HPRT-mutant subclones selected from unirradiated Chinese hamster V-79 cells and from HPRT-mutant subclones that arose after exposure to gamma-rays, 1 GeV protons and 14N-ions (LET-77 keV/micrometers), produced by the synchrophasotron and the U-400M heavy ion accelerator. Slow growing mutant subclones were observed. The cytogenetic properties of individual clones were highly heterogeneous and chromosome instability was observed in both spontaneous and radiation-induced mutants. Chromosome instability was highest among spontaneous mutants and decreased with increasing LET.  相似文献   

16.
针对130 nm体硅反相器链,利用脉冲激光和重离子实验研究了目标电路单粒子瞬态(SET)的脉宽特性,并分析了电路被辐射诱发的SET脉宽特性受激光能量、重离子线性能量传递(LET)值、PMOS管栅长尺寸等因素的影响机制。重离子和脉冲激光实验结果类似,均表现为随激光能量、LET值的增加,电路被辐射诱发的SET脉宽逐步增大,且表现出明显的双(多)峰分布趋势,但辐射诱发的SET脉冲个数呈先增加再减少规律。此外,实验结果表明,在不同激光能量、LET值下,PMOS管栅长尺寸影响反相器链SET脉冲的特征不同。当激光能量、LET值较低时,PMOS管栅长尺寸大的电路产生的SET脉宽较大,而当激光能量、LET值较大时,PMOS管栅长尺寸小的电路反而产生更宽的SET脉冲。分析表明,较高激光能量、LET辐照时,寄生双极放大效应被触发可能是导致PMOS管栅长尺寸影响电路SET特征差异的主要原因。   相似文献   

17.
Cell-cycle radiation response: role of intracellular factors.   总被引:1,自引:0,他引:1  
We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during cell division are thought to be intracellular factors of importance to the radiation survival response. These factors may contribute to modifying the age-dependent yield of lesions or more likely, to the efficiency of the repair processes. These molecular factors have been implicated in our cellular measurements of the larger values for the radiobiological oxygen effect late in the cycle compared to earlier cell ages. Low-LET radiation also delays progression through S phase which may allow more time for repair and hence contribute to radioresistance in late-S-phase. The cytoplasmic and intranuclear milieu of the cell appears to have less significant effects on lesions produced by high-LET radiation compared to those made by low-LET radiation. High-LET radiation fails to slow progression through S phase, and there is much less repair of lesions evident at all cell ages; however, high-LET particles cause a more profound block in G2 phase than that observed after low-LET radiation. Hazards posed by the interaction of damage from sequential doses of radiations of different qualities have been evaluated and are shown to lead to a cell-cycle-dependent enhancement of radiobiological effects. A summary comparison of various cell-cycle-dependent endpoints measured with low- or high-LET radiations is given and includes a discussion of the possible additional effects introduced by microgravity.  相似文献   

18.
Aminothiols represent the most important group of radioprotective compounds. The most effective compounds administered at an optimal dose and time before irradiation are able to provide a protection in mice with a dose reduction factor (DRF) of about 2-2.5. The working mechanism can partly be explained as a scavenging process of radicals induced in water and partly as a chemical repair process of injured DNA. The endogenous aminothiol which has far-out the highest intracellular concentration is glutathione (GSH). The importance of intracellular GSH in determining cellular radiosensitivity has been shown by irradiating cells that had very low GSH levels. Such cells appear to have a high radiosensitivity, especially in hypoxic conditions. On the other hand, it has been demonstrated that induction of a high GSH level (100-200% above the normal level) provides only a small protection. In vitro experiments with DNA indicate that thiols with a high positive charge condense in the vicinity of DNA and are effective protectors, whereas thiols with a negative charge are kept away from it and are poor protectors. In comparison with the most effective exogenous aminothiols like cysteamine and WR1065, GSH is not an effective radioprotector. Putative explanations for this relatively poor protective ability of GSH are presented.  相似文献   

19.
The relation between the site of energy deposition and the site of its biological action is an important question in radiobiology. Even at 77 degrees K, evidence is clear that these two sites must be separated since energy deposition is random but specific products are formed. Several processes that may contribute to this separation are: 1) hole migration and stabilization through deprotonation to give neutral oxidation product radicals; 2) electron trapping and transfer to form specific radical anions, possibly followed by protonation to give neutral reduction product radicals; and 3) recombination of spatially separated charges or radicals. These microscopic processes will be reviewed critically in an analysis using electron paramagnetic resonance spectroscopy (EPR) evidence for and against long-range transfer of energy and/or charge in frozen, hydrated DNA.  相似文献   

20.
Our research over the last several years has suggested that young (3 mo) rats exposed to whole-body 56Fe irradiation show neuronal signal transduction alterations and accompanying motor behavioral changes that are similar to those seen in aged (22-24 mo) rats. Since it has been postulated that 1-2% of the composition of cosmic rays contain 56Fe particles of heavy particle irradiation, there may be significant CNS effects on astronauts on long-term space flights which could produce behavioral changes that could be expressed during the mission or at some time after the return. These, when combined with other effects such as weightlessness and exposure to proton irradiations may even supercede mutagenic effects. It is suggested that by determining mechanistic relationships that might exist between aging and irradiation it may be possible to determine the common factor(s) involved in both perturbations and develop procedures to offset their deleterious effects. For example, one method that has been effective is nutritional modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号