首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern studies now favor the fact that extraterrestrial organic molecules served as an important source of biological important substances on the primitive Earth. It is presumed that these space-made organic molecules could be transported safely to the Earth surface being associated with mineral grains. It is important to test whether nucleotides synthesized in Earth orbit could be protected by lunar surface regolite. The phosphorylation of adenosine, uridine and thymidine has been studied with respect of their further transformations and degradation in presence of mineral bed. After retrieval, HPLC analysis is used to identify all the mononucleotides of certain nucleosides. It has been shown, that exposure of the investigated nucleosides as dry films in space conditions in the presence of Lunar soil increases the yield of synthesized nucleotides in 1.1-3.0 times as compared with the exposure of the same samples in absence of Lunar soil. To identify and evaluate the principal source of energy in open space responsible for nucleotide synthesis reaction laboratory experiments were performed. It has been shown, that vacuum ultra violet (VUV 145 nm) radiation promotes nucleotide synthesis more effectively than ultra violet (UV 254 nm) while the presence of Lunar soil increases reaction yield in 1.5-2.0 times. Formation of 5'-mononucleotides seemed to be the most effective reaction both in flight and in laboratory experiments. Protective action of lunar soil on synthesized nucleotides against UV radiation has been shown in open Space conditions.  相似文献   

2.
Anticodons are trinucleotides in transfer RNA (tRNA) molecules. The latter carry amino acids for insertion into the polypeptide sequences of proteins during the translation of messenger RNA (mRNA) molecules. Messenger RNA molecules are transcribed from genes. Evolution of tRNA molecules has resulted in a set of anticodons for the 20 amino acids that are used in protein synthesis. This set of anticodons is slightly different in mitochondrial codes from the set that is used in the nuclear “universal” code. Theories for the evolution of the code include frozen accident, doublet expansion, repeating triplets and coevolutionary distribution. The number of codons has always been fixed at 64 by mathematical rules, but because an anticodon may pair with more than one codon, the number of anticodons is only 54 in the universal code, is smaller in mitochondrial codes, and was probably even smaller in archetypal primitive codes. Evidence of anticodon evolution can be seen by comparing mitochondrial codes with the universal code. Codes used by very primitive organisms that are now extinct might have specified fewer amino acids than are now used.  相似文献   

3.
4.
Liposomes are 5 to 50 micron vesicles with an internal aqueous environment, whose amphiphilic lipidic components self-assemble into systems with at least one double-layered membrane. Liposomes have been suggested as possible models of precellular systems formed in the early Archean Earth from lipids of non-enzymatic origin. Since it is generally accepted that RNA molecules preceded double-stranded DNA molecules as genetic material, we have studied the encapsulation of polyribonucleotides within liposomes made from dipalmitoyl phosphatidylcholine, and from egg yolk phosphatidylcholine to which cholesterol was added in some cases. The liposomes were prepared under anoxic conditions following the reverse phase evaporation method described by Szoka and Papahadjopoulos. Quantitative determinations show that approximately 50% of the available lipids form liposomes, and that up to 5% of the polyribonucleotides can be entrapped by them. We have also studied the encapsulation of polyribonucleotides in the presence of 1) urea and cyanamide, two non-electrolytes that have been used as prebiotic condensing agents, and 2) of Zn++ and Pb++, two cations employed in the non-enzymatic template-directed synthesis of polyribonucleotides from activated nucleotides.  相似文献   

5.
During the last years data have evidenced that alteration in nucleic acid metabolism, expecially increased urinary excretion of modified nucleosides reflects physiological changes in living organism. In relation with the Soyuz-36-Salyut-6-Soyuz-35 mission in 1980 urinary nucleoside excretion of two astronauts /B.F., V.K./ were traced. Individual daily urine samples were collected for 4 days before starting and 6 days after landing and were analysed with improved analytical procedures /affinity chromatography, high Performance liquid chromatography/. Levels of 1-methylinosine, 1-methylguanosine and N,2,2-dimethylguanosine in urine were determined. Thus recorded changes differ considerably at two astronauts. One of the /V.K./ excreted nucleosides normally, another /B.F./ showed increase to 200-400 % levels excretion of above nucleosides on the second day after landing. The peak values disappeared on the 3-6 days after. To interpret this phenomenon extreme factors of space-flight /weightlessness, stress, radiations, etc./ have to be taken into consideration. However, we attach importance to training of astronauts. During the last decade data have evidenced that alterations in the metabolism of nucleic acids especial increased urinary excretion of modified nucleosides reflects physiological and in some cases pathological changes in living organism. In relation with the Soyuz-36-Salyut-6-Soyuz 35 mission urinary excretion of certain modified nucleosides of two astronauts /B.F. and V.K./ were measured. The aim of the measurements was: how the metabolism of transfer ribonucleic acids /tRNAs/ referring to cosmic flight, how it is reflected in urinary excretions of modified nucleosides. For these purposes we studied the excretion of methylguanosine, dimethylguanosine and methylinosine. These nucleosides are the normal minor components of tRNA.  相似文献   

6.
The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic molecules as well as the water in which they could have further evolved are consistent with theories of the early earth environment.  相似文献   

7.
The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions.  相似文献   

8.
Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth's atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial-meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth.  相似文献   

9.
Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).  相似文献   

10.
The dual properties of RNA as an enzyme catalyst (ribozyme) and its ability to store genetic information suggest that early life could have been based on RNA. We have synthesized RNA oligomers up to 50-mer chain lengths by Na+-montmorillonite catalyzed reactions of 5′-activated mononucleotides. For studying chiral selectivity, the reactions of racemic mixtures of D, L-ImpA and D, L-ImpU were carried out on Na+-montmorillonite. The dimer, trimer, tetramer and pentamer fractions (yields 43.3%, 14.5%, 5.8% and 3.0%, respectively) were investigated for homochiral selection. These products were collected via ion exchange HPLC, their terminal 5′-phosphate was cleaved by alkaline phosphatase and further analyzed by reverse phase HPLC. Twelve linear and three cyclic dimers were isolated and characterized. The homochirality of dimers was 63.5 ± 0.8%. Out of the sixteen trimers isolated, ten were homochiral with an overall homochirality of 74.2 ± 1.6%. The tetramers and pentamers were separated into 24 and 20 isomers, respectively. Their co-elution with those formed in the binary reactions of D-ImpA with D-ImpU on Na+-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality, respectively. These results suggest that Na+-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection. Work is in progress to determine chiral selectivity in the reaction mixtures of activated nucleotides of racemic A, U, G and C on Na+-montmorillonite.  相似文献   

11.
During the last three decades major advances have been made in our understanding of the formation of carbon compounds in the universe and of the occurence of processes of chemical evolution. 1) Carbon and other biogenic elements (C,H,N,O,S and P) are some of the most abundant in the universe. 2) The interstellar medium has been found to contain a diversity of molecules of these elements. 3) Some of these molecules have also been found in comets which are considered the most primordial bodies of the solar system. 4) The atmospheres of the outer planets and their satellites, for example, Titan, are actively involved in the formation of organic compounds which are the precursors of biochemical molecules. 5) Some of these biochemical molecules, such as amino acids, purines and pyrimidines, have been found in carbonaceous chondrites. 6) Laboratory experiments have shown that most of the monomers and oligomers necessary for life can be synthesized under hypothesized but plausible primitive Earth conditions from compounds found in the above cosmic bodies. 7) It appears that the primitive Earth had the necessary and sufficient conditions to allow the chemical synthesis of biomacromolecules and to permit the processes required for the emergence of life on our planet. 8) It is unlikely that the emergence of life occurred in any other body of the solar system, although the examination of the Jovian satellite Europa may provide important clues about the constraints of this evolutionary process. Some of the fundamental principles of chemical evolution are briefly discussed.  相似文献   

12.
Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.  相似文献   

13.
Using electroncytochemical and biochemical methods, differences between the cytochemical reaction intensity and activity of the cellulosolytic enzymes in Funaria hygrometrica moss cells grown for 30 days in the horizontal clinostat (2 rev/min) and in control have been studied. It has been shown that on clinostating the precipitate amount and size increases with the cellulase activity enhancement in the periplasmic space and protonema cell walls, when compared to control. Using biochemical methods it has been found that the activity of both endo-1,4-beta-glucanase and exo-1,4-beta-glucanase was higher under these conditions. A decrease of cellulose total content, its crystalline form, and pectic substances as well as an increase of hemicellulose content have been revealed in the clinostated material compared to control. Data obtained are discussed regarding the possible mechanism of cellulase activation and synthesis inhibition and cellulose crystallization in plant cell walls at clinostating.  相似文献   

14.
The chemistry in a supersonic plasma source flow was studied as a laboratory model for interstellar chemical evolution. It is important to match the similarity parameters for cosmic and laboratory conditions, which connect the temporal and spatial scales of the two cases. The apparatus simulated the conditions in a molecular cloud with respect to molecular-ionic reaction fraction, temperature, and non-equilibrium kinetics. The plasma flow was found to be cold enough, by the radical expansion, to produce polyatomic molecules. From the simple atomic plasma as reactant, cyanopolyyne and unsaturated hydrocarbons were synthesized in the present experiment. These molecules are also inherent in molecular clouds. The reaction mechanism is discussed.  相似文献   

15.
The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.  相似文献   

16.
Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.  相似文献   

17.
Unlike ribose chemistry, the chemistry of 2-deoxyribose precludes its formation or at least its incorporation into nucleotides under accepted "primordial soup" conditions; therefore RNA and DNA could not develop in parallel during the evolution of protocells. However, deoxyribonucleotides might have been formed abiotically by direct reduction of ribonucleotides in a primitive version of the biochemical pathway. This sequence of events, in which DNA lagged behind RNA in the assembly of genetic information for an unknown--probably short--period of time is suggested by the primitive traits (i.e., nucleotide binding, thiol redox chemistry, and metal ion catalysis) of present-day enzyme systems of deoxyribonucleotide biosynthesis. The reaction should be amenable to experimental study.  相似文献   

18.
The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 1.91 kg/person day of urine is produced, with urea and various salts as its main components. In this research we explore the utilization of urease (EC 3.5.1.5, 15,000 U/g) along with a platinized boron doped diamond electrode (Pt-BDD) to degrade urea. Urea is directly degraded to nitrogen by the in situ utilization of the reaction products as a strategy to increase the amount of clean water in future space expeditions. The biochemical reaction of urease produces ammonia and carbon dioxide from urea. Thereafter, ammonia is electrooxidized at the interface of the Pt-BDD producing molecular nitrogen. The herein presented system has been proven to have 20% urea conversion efficiency. This research has potential applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in situ resource recovery), while generating electricity from the same process.  相似文献   

19.
A theoretical approach to the understanding of the biochemical mechanisms of indirect action of ionizing radiation on SV40 DNA in aqueous solution is presented. The extent of OH attack on the sugar moiety and bases has been calculated. A realistic model for the DNA (in B form) based on available X-ray diffraction data is used and specific reaction sites for the OH radicals are obtained. A Monte Carlo scheme is used to follow the diffusion and reaction of the OH radicals. Effects of track structure have been considered and the single strand break D37 values for 14 MeV electrons (low-LET) and 670 MeV/u and 40 MeV/u neon particles are presented. Calculated results are in agreement with available experimental data. It has been found that regardless of the qualities of radiation, 80% of the OH attack on DNA is on the bases and 20% is on the deoxyribose. From probability considerations only, it appears that the number of double strand breaks varies linearly with dose.  相似文献   

20.
Astronomical infrared spectra are used to confirm the existence of complex organic molecules produced by ultraviolet photoprocessing of interstellar grain mantles. This material is shown to be the major component of the interstellar grains between the sun and the galactic center and, by inference, constitutes more than 10 million solar masses — or close to one part in a thousand of the entire mass of the milky way galaxy. It may be demonstrated that the primitive chemistry of the earth's surface was dominated by these extraterrestrial molecules after aggregated into comets if the rate of comet impacts with the earth was comparable with that required to account for the extinction of species over the past 300 million years.

Ultraviolet irradiation of bacterial spores has been studied for the first time under simulated interstellar conditions. The inactivation time predicted for the less dense regions of space is at most several hundred years. Within molecukar clouds it is shown on theoretical and experimental grounds that this t the estimated cloud. However survival of spores during their initial exposure to the solar ultraviolet presents a problem for panspermia because it requires that in the process of ejection from the earth's surface they must be enclosed within a cocoon (or mantle) of ultraviolet absorbing material of 0.6 μm thickness. Thus, although panspermia can not be rejected on the basis of lack of interstellar survival there may remain insurmountable obstacles to its occuring because of the very special protective shield requirements during ejection from its planetary source.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号