首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S3 absorption cross section equals 6×10−17 cm2 at 400 nm, 6 × 10−19 cm2 at 500 nm (less by a factor of 4 than that given by Sanko), 4×10−20 cm2 at 600 nm. That of S4 equals 1.5 × 10−17 cm2 at 450 nm, 8 × 10−17 cm2 at 500 nm, and 4.7 × 10−17 cm2 at 600 nm. Preliminary evaluation of the S3 mixing ratio in the lower atmosphere of Venus is (8±3)×10−11 at 5 to 25km according to the Venera 14 measurements and several times lower at the locations of the Veneras-11 and -13.  相似文献   

2.
We review the advantages and possibilities of small satellites. New results of data reduction of the satellite-borne experiment RELICT-1 are presented. For the inflation spectrum of primordial perturbations we obtained the estimate for quadrupole component 6·10−6 <ΔT2/T<3.3·10−6. The RELICT-2 mission will provide a possibility of measurement of CBR anisotropy down to the level less than ΔT2/T = 10−8. We present the results of engineering testing of RELICT-2 measurement system and discuss ways of improving of the radiometers sensitivities.  相似文献   

3.
Experimental drop tube of the metallurgy department of Grenoble   总被引:1,自引:0,他引:1  
The drop tube which will be available in the “Centre d'Etudes Nucléaires de Grenoble” is described. Its main features are the following: - Dimensions : Drop height : 47.1 m Drop time : 3.1 s Tube inside diameter : 0.2 m - Experimental atmosphere : 1 Ultra-vacuum : 10−6 to 10−7 Pa - Residual gravity level : 10−8 to 10−9 g according to the vacuum level and drop diameter.

This facility is unique insofar as it enables experiments to be performed under ultra-vacuum conditions which, by delaying the formation of surface oxides, should contribute to improving maximum undercooling values.

The techniques used for obtaining small metallic drops (0.5 to 3 mm) are described. The availability of this instrument for the scientific community is also foreseen by the french sponsoring organizations (CEA, CNES, CNRS) ; some practicle informations will be given to potential experimenters.  相似文献   


4.
The speed distribution of meteoroids encountering the Earth is shown to be similar for all meteoroid masses in the range 1 g to 10−12 g. The speed distribution of interplanetary meteoroids encountering the Earth has usually been inferred from meteor observations. This paper reviews commonly quoted distributions and introduces more recent estimates. The influence quoted measurement uncertainties have on the distribution of Earth encounter velocities presented by Sekanina and Southworth (1975) and Erickson (1968) is presented. The Divine (1993) model of interplanetary meteoroids fits a set of orbital distributions to a wide range of spacecraft and ground based dust detector observations. By ‘flying’ the Earth through this model the distribution of geocentric encounter velocities has been obtained for typical particle masses, 10−9 and 10−12 g while those at 10−4 and 10−5 g are shown to be in error.  相似文献   

5.
The modelling accuracy of the LAGEOS 1 orbit was continously improved since its launch in 1976. In spite of these experiences the modelling accuracy of LAGEOS 2 is still about 20 per cent worse. Considering e. g. only the influence of different gravity field models it has been shown that the orbital fits for arc lengths of one month is generally about 25 mm for LAGEOS 1 and more than 30 mm for LAGEOS 2. This is mainly due to the fact that LAGEOS 2 has not yet been used for the determination of most gravity field models. The influences of different model parameters on the estimation of station coordinates, Earth rotation parameters, the geogravitational coefficient, the radiation pressure coefficient, and the empirical acceleration has been studied. The differences and peculiarities of both satellites are discussed. Although the analysis of LAGEOS 2 data still does not reach the high level of LAGEOS 1 combination solutions using both satellites allow new insights, higher accuracies, and a higher time resolution for the parameters and phenomena investigated.  相似文献   

6.
We review recent progress in the use of analyses of fluctuations in the cosmic X-ray background (XRB) to determine the source counts below the detection thresholds. Three flux domains are discussed: the range around 10−12erg cm−2 s−1 where the Ginga and Einstein Observatory results remain inconsistent unless the sources at these fluxes (mainly Seyfert galaxies) are highly absorbed at low energies, the 10−14erg cm−2 s−1 zone where the flattening of the source counts predicted by fluctuation analyses of Einstein Observatory images is now confirmed by Rosat, and the 10−15erg cm−2 s−1 flux domain, where fluctuation analyses of Rosat images show that source counts remain subeuclidean with very little contribution to the XRB coming from these sources.  相似文献   

7.
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel.  相似文献   

8.
The Dust Impact Detection System (DIDSY) for the Giotto Halley Mission consists of two types of sensors for the detection of cometary dust particles: two impact plasma sensors and five piezo-electric momentum sensors. One sensor of each type is covered by a penetration film. A 1 μm thick aluminum film covers an impact plasma sensor. One momentum sensor is mounted onto the rear shield behind the 1 mm front shield made from aluminum. The parameters measured are the total charge released upon impact and the amplitude of the acoustic signal generated by the impact. Both quantities depend on the mass and speed of the impacting particles. At the impact speed of 68 km/sec the mass of cometary dust particles can be determined in the mass range from 10−17 g to 10−3 g. From the difference in the countrates measured by the sensors with and without penetration film the average bulk density of dust particles of masses 10−14 g and 10−6 g can be determined. With appropriate calibration an accuracy of a factor of 2 for both the mass and density determination can be obtained.  相似文献   

9.
The Geminga light curve obtained with the “Gamma-1” telescope features two peaks separated by 0.5 ± 0.03 period. The light curve is pronounced for γ-quanta energies higher than 400 MeV. The pulsed flux upper limit (1σ) in the energy interval 50 – 300 MeV is 6·10−7 cm−2sec−1. For energies >300 MeV the pulsed component power law spectrum has an exponent 1.1 −0.3+1.1 and an integral flux (1.1±0.3)·10−6 cm−2sec−1.  相似文献   

10.
We interpret the rapid correlated UV/optical/X-ray variability of XTE J1118+480 as a signature of the coupling between the X-ray corona and a jet emitting synchrotron radiation in the optical band. We propose a scenario in which the jet and the X-ray corona are fed by the same energy reservoir where large amounts of accretion power are stored before being channelled into either the jet or the high energy radiation. This time-dependent model reproduces the main features of the rapid multi-wavelength variability of XTE J1118+480. A strong requirement of the model is that the total jet power should be at least a few times larger than the observed X-ray luminosity, implying a radiative efficiency for the jet j  3 × 10−3. This would be consistent with the overall low radiative efficiency of the source. We present independent arguments showing that the jet probably dominates the energetic output of all accreting black holes in the low-hard state.  相似文献   

11.
The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-disubstituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10−2 to 10−3 M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.  相似文献   

12.
Calibration of the DIDSY experiment momentum sensors for the GIOTTO Mission to Comet Halley requires laboratory simulation of impacts at 68 km s−1 for particle mass values in the range 10−6 g to 10−10 g. Existing techniques for particle acceleration cannot simultaneously attain these extreme values of velocity and particle mass, making it necessary to adopt some less direct method of impact simulation. This paper considers the application of high power pulsed lasers for laboratory simulation of the momentum impulse produced by a cometary dust particle impact on the GIOTTO spacecraft.  相似文献   

13.
Information about the amount and spatial structure of atmospheric water vapor is essential in understanding meteorology and the Earth environment. Space-borne remote sensing offers a relatively inexpensive method to estimate atmospheric water vapor in the form of integrated water vapor (IWV). The research activity reported in the present paper is based on the data acquired by the HRPT/MODIS (High Resolution Picture Transmission, MODerate resolution Imaging Spectroradiometer) receiving station established in Budapest (Hungary) by the Space Research Group of the Eötvös Loránd University. Integrated water vapor is estimated by the remotely sensed data of the MODIS instrument with different methods and also by the operational numerical weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF). Radiosonde data are used to evaluate the accuracy of the different IWV fields though it has been pointed out that the in situ data also suffers from uncertainties. It was found that both the MODIS and the ECMWF based fields are of good accuracy. The satellite data represent finer scale spatial structures while the ECMWF data have a relatively poor spatial resolution. The high quality IWV fields have proved to be useful for radiative transfer studies such as the atmospheric correction of other satellite data from times different than the overpass times of satellites Terra/Aqua and the forecast times of the model data. For this purpose the temporal variability of IWV is scrutinized both using ECMWF and MODIS data. Taking advantage of Terra and Aqua overpasses, the mean rate of change of IWV estimated by the near infrared method was found to be 0.47 ± 0.45 kg m−2 h−1, while it was 0.13 ± 0.65 kg m−2 h−1 based on the infrared method. The numerical weather prediction model’s analysis data estimated −0.01 ± 0.13 kg m−2 h−1 for the mean growth rate, while using forecast data it was 0.24 ± 0.18 kg m−2 h−1. MODIS data should be used when available for the estimation of the IWV in other studies. If no satellite data are available, or available data are only from one overpass, ECMWF based IWV can be used. In this case the analysis fields (or the satellite field) should be used for temporal extrapolation but the rate of change should be calculated from the forecast data due to its higher temporal resolution.  相似文献   

14.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   

15.
During the last few decades various techniques have made it possible to accelerate microparticles (10−6 – 10−15 gr) up to tens of km/sec and macroparticles (1 gr or so) up to 10 km/sec, thus furthering our understanding of many impact related phenomena occurring on the surfaces of celestial bodies.

This review will deal with existing techniques for the acceleration of hypervelocity projectiles. The performance of electrostatic accelerators, electromagnetic rail guns and related systems, plasma drag accelerators, light gas guns and explosive accelerating techniques is reviewed, and the capabilities and limitations of each type are briefly discussed. An attempt is made to assess the future promise of existing techniques and the realism of some current suggestions.  相似文献   


16.
At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64 – 35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of −1.2 cm−2 s−1 sr−1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1–3 days. Possible reasons for these unexpected phenomena are discussed.  相似文献   

17.
Nonlinear calculations of the anomalous electrical conductivity in the plasma of the earth's plasma mantle, the tail plasma sheet boundary layer and the ionospheric F-region density-trough are presented provided that lower-hybrid-drift turbulence exists. It is shown that in these regions the stabilization of the wave growth is mainly caused by current relaxation. Further, the fluctuations of the electrical currents are estimated via Ampère's and Ohm's laws. It is found that the lower-hybrid-drift turbulence causes maximum anomalous collision frequencies of the order of 10−2 Hz in the magnetosphere. The maximum current fluctuations are about 3 10−9 A/m2. The theoretical results are in agreement with ISEE and Prognoz-8 measurements.  相似文献   

18.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

19.
Conditions appropriate to gas-surface interactions on satellite surfaces in orbit have not been successfully duplicated in the laboratory. However, measurements by pressure gauges and mass spectrometers in orbit have revealed enough of the basic physical chemistry that realistic theoretical models of the gas-surface interaction can now be used to calculate physical drag coefficients. The dependence of these drag coefficients on conditions in space can be inferred by comparing the physical drag coefficient of a satellite with a drag coefficient fitted to its observed orbital decay. This study takes advantage of recent data on spheres and attitude stabilized satellites to compare physical drag coefficients with the histories of the orbital decay of several satellites during the recent sunspot maximum. The orbital decay was obtained by fitting, in a least squares sense, the semi-major axis decay inferred from the historical two-line elements acquired by the US Space Surveillance Network. All the principal orbital perturbations were included, namely geopotential harmonics up to the 16th degree and order, third body attraction of the Moon and the Sun, direct solar radiation pressure (with eclipses), and aerodynamic drag, using the Jacchia-Bowman 2006 (JB2006) model to describe the atmospheric density. After adjusting for density model bias, a comparison of the fitted drag coefficient with the physical drag coefficient has yielded values for the energy accommodation coefficient as well as for the physical drag coefficient as a function of altitude during solar maximum conditions. The results are consistent with the altitude and solar cycle variation of atomic oxygen, which is known to be adsorbed on satellite surfaces, affecting both the energy accommodation and angular distribution of the reemitted molecules.  相似文献   

20.
Soft X-ray observations by SMM and other spacecraft have shown that the abundance of certain elements in solar corona varies from flare to flare. In this study, observations made by the Yohkoh Bragg Crystal Spectrometer (BCS) in helium-like Ca XIX have been analysed, and Ca abundance determined for 177 flares observed during the first four years of the mission (1991–1995). The average abundance of Ca relative to H for all flares is ACa = (3.64±0.39) × 10−6. As with an earlier study of SMM data, the abundance is found to be enhanced compared to the photosphere ((2.24±0.10) × 10−6), and with only minor variation from flare to flare. However, the absolute value and range of values determined by this study is smaller than in the previous study; these differences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号