首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thoma  M.H. 《Space Science Reviews》2002,100(1-4):141-151
Quantum field theory at finite temperature and density can be used for describing the physics of relativistic plasmas. Such systems are frequently encountered in astrophysical situations, such as the early universe, supernova explosions, and the interior of neutron stars. After a brief introduction to thermal field theory the usefulness of this approach in astrophysics will be exemplified in three different cases. First the interaction of neutrinos within a supernova plasma will be discussed. Then the possible presence of quark matter in a neutron star core and finally the interaction of light with the Cosmic Microwave Background will be considered.  相似文献   

2.
Studies evaluating the transport coefficients for energetic particles in interplanetary space are described in relation to particle data.In position space, the main mode of propagation is along field lines but perpendicular diffusion and drift motion is also possible. Diffusion coefficients based on interplanetary magnetic field data are either derived from quasi-linear, adiabatic theory or this theory corrected for finite scattering near 90° pitch angle or by numerical techniques. Relevant particle data includes solar proton event time profile and anisotropy measurements. In general, when Fokker-Planck transport equation solutions are fitted to particle data, the parallel diffusion coefficients obtained still appear rather larger than those given by theoretical estimates. Perpendicular diffusion is shown to be due to field line wandering and random drift motion effects. The importance of drift motion in cosmic ray modulation theory is mentioned.Although much emphasis is currently placed upon shock acceleration in CIR's, statistical acceleration in interplanetary space must be considered. Energetic particles may gain energy from longitudinal waves and cyclotron resonance interactions. Analytical and numerical estimates of the energy space diffusion coefficients are considered. Some reveal a surprising importance to this statistical acceleration and can explain a variety of data.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   

3.
The Electric Field Instrument (EFI) for THEMIS   总被引:2,自引:0,他引:2  
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes.  相似文献   

4.
爱因斯坦光电效应方程可以完满地解释光电效应的实验规律。方程所描写的是光子与金属中的自由电子相互作用的一个量子过程,光子与电子的作用,不可能把能量全部交给电子,只有受金属束缚的电子,才可以全部吸收一个光子的能量。把金属中的自由电子先当作为真空中的完全自由电子来处理,再设它完全吸收一个光子,这种设想是不正确的。它不能用经典的力学过程来类比而分解为两个独立的过程。有关光子与物质作用的量子理论,则应该用量子电动力学。  相似文献   

5.
6.
电脉冲除冰(EIDI)技术研究   总被引:1,自引:0,他引:1  
将电脉冲除冰(EIDI)系统的一个工作周期分解为四个过程,进而分析其工作原理.以冲击摆锤试验和Bernhart-Schrag模型为例,介绍了电动力学方面的研究方法和研究成果.通过蒙皮表面加速度、应变、振动位移等参数,分析了由脉冲力所产生的结构动力学特性.利用蒙皮表面的应变程度,给出了一种除冰预测准则.总结了包括飞行试验、疲劳试验以及电磁干扰试验在内的工程应用试验研究结果.在此基础上,对EIDI技术的发展方向进行了展望.   相似文献   

7.
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008–2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.  相似文献   

8.
Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.  相似文献   

9.
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.  相似文献   

10.
It is now well established that both thunderclouds and lightning routinely emit x-rays and gamma-rays. These emissions appear over wide timescales, ranging from sub-microsecond bursts of x-rays associated with lightning leaders, to sub-millisecond bursts of gamma-rays seen in space called terrestrial gamma-ray flashes, to minute long glows from thunderclouds seen on the ground and in or near the cloud by aircraft and balloons. In particular, terrestrial gamma-ray flashes (TGFs), which are thought to be emitted by thunderclouds, are so bright that they sometimes saturate detectors on spacecraft hundreds of kilometers away. These TGFs also generate energetic secondary electrons and positrons that are detected by spacecraft in the inner magnetosphere. It is generally believed that these x-ray and gamma-ray emissions are generated, via bremsstrahlung, by energetic runaway electrons that are accelerated by electric fields in the atmosphere. In this paper, we review this newly emerging field of High-Energy Atmospheric Physics, including the production of runaway electrons, the production and propagation of energetic radiation, and the effects of both on atmospheric electrodynamics.  相似文献   

11.
We discuss pickup ion acceleration and transport near the solar wind termination shock from the perspective of their spectral, spatial, and pitch-angle distributions. Our study is performed in the framework of a recently developed anisotropic transport model based on a Legendre polynomial expansion technique. Voyager 1 LECP angular distributions of 1 MeV protons, represented in the form of an expansion in spherical harmonics in the frame aligned with the measured interplanetary magnetic field, are used as benchmarks for our theory. We find the observed distributions consistent with our model predictions for particle acceleration and reflection at a highly oblique shock wave. It is shown that first-order (field aligned) anisotropy is a measure of shock obliquity while the second-order (transverse) anisotropy reflects the energy dependence of the particle scattering mean free path. We also discuss the role of enhanced scattering and momentum diffusion on the spectral properties of energetic charged particles.  相似文献   

12.
王玮  杜星文 《航空学报》2008,29(2):472-477
 预浸机织织物是一种未固化的织物复合材料,其性质既不同于纯织物材料也不同于固化后的织物复合材料,具有独特的力学性质。根据连续介质力学的理论,结合预浸织物的非线性的黏弹性特性,从代数不变量出发,推导了预浸织物的本构方程。同时对描述预浸织物性能的像框剪切试验的步骤及方法做了阐述。通过像框剪切试验的结果与本构方程的对比,验证了本构方程的正确性,该方程较好地描述了预浸积物的性质。本构方程的导出为研究空间充气结构的静态、动态及热分析奠定了一定的理论基础。  相似文献   

13.
Observations in the solar wind have revealed important insights into how energetic particles are accelerated in astrophysical plasmas. In circumstances where stochastic acceleration is expected, a suprathermal tail on the distribution function is formed with a common spectral shape: the spectrum is a power law in particle speed with a spectral index of −5. Recent theories for this phenomenon, in which thermodynamic constraints are applied to explain the common spectral shape, are reviewed. As an example of potential extensions of this theoretical work, consideration is given to the acceleration of Anomalous Cosmic Rays in the heliosheath.  相似文献   

14.
We review the particular aspect of determining particle acceleration sites in solar flares and coronal mass ejections (CMEs). Depending on the magnetic field configuration at the particle acceleration site, distinctly different radiation signatures are produced: (1) If charged particles are accelerated along compact closed magnetic field lines, they precipitate to the solar chromosphere and produce hard X-rays, gamma rays, soft X-rays, and EUV emission; (2) if they are injected into large-scale closed magnetic field structures, they remain temporarily confined (or trapped) and produce gyrosynchrotron emission in radio and bremsstrahlung in soft X-rays; (3) if they are accelerated along open field lines they produce beam-driven plasma emission with a metric starting frequency; and (4) if they are accelerated in a propagating CME shock, they can escape into interplanetary space and produce beam-driven plasma emission with a decametric starting frequency. The latter two groups of accelerated particles can be geo-effective if suitably connected to the solar west side. Particle acceleration sites can often be localized by modeling the magnetic topology from images in different wavelengths and by measuring the particle velocity dispersion from time-of-flight delays.  相似文献   

15.
Cosmic rays provide a diagnostic tool to analyze processes in interplanetary space and at the Sun. Cosmic rays also directly affect the terrestrial environment and serve as indicators of solar variability and non anthropogenic climatic changes on Earth at present and in the distant past. After the invention of the neutron monitor by John A. Simpson in 1948, an international network of cosmic ray detectors developed in a cooperative effort to examine temporal and spatial variations in our space environment. The resulting datasets represent the longest continuous, high time resolution series of particle radiation measurement in space science. At present, the neutron monitor network is complemented by spacecraft instrumentation to study solar-terrestrial correlated phenomena. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The theory and observational evidence pertaining to particle acceleration by shock waves in astrophysical objects and in space are systematized. Recent works showing observational and theoretical aspects of the problem dealing with shocks in turbulent media are emphasized. The acceleration of particles by shocks in turbulent media is observed in interplanetary space. This acceleration mechanism is of particular interest from the point of view of the origin of cosmic rays, providing the degree form of the spectrum. The index of the spectrum is close to the observable one for galactic cosmic rays. It depends slightly on specific conditions in the acceleration region. Electron and nucleus acceleration in supernova remnants and in radiogalaxies is discussed, and theory and observational data are compared. The theory of particle acceleration by supersonic turbulence is outlined.  相似文献   

17.
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at ??3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang??E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.  相似文献   

18.
流体力学深度学习建模技术研究进展   总被引:1,自引:0,他引:1  
王怡星  韩仁坤  刘子扬  张扬  陈刚 《航空学报》2021,42(4):524779-524779
深度学习技术在图像处理、语言翻译、疾病诊断、游戏竞赛等领域已带来了颠覆性的变化。流体力学问题由于维度高、非线性强、数据量大等特点,恰恰是深度学习擅长并可以带来研究范式创新的重要领域。目前,深度学习技术已在流体力学领域得到了初步应用,其应用潜力逐渐得到证实。以流体力学深度学习技术为背景,结合课题组近期研究结果,探讨了流体力学深度学习建模技术及其最新进展。首先,对深度学习技术所涉及的基本理论做了介绍,阐释流场建模中常用深度学习方法背后的数学原理。其次,分别对流体力学控制方程、流场重构、特征量建模和应用等几个典型的人工智能与流体力学交叉问题应用场景所涉及的深度学习技术研究进展进行了介绍。最后,探讨了流体力学深度学习建模技术所面临的挑战与未来发展趋势。  相似文献   

19.
Jokipii  J.R. 《Space Science Reviews》1998,86(1-4):161-178
Cosmic rays from many sources and in many locations exhibit similar, inverse-power-law energy spectra, which suggests a common origin for most cosmic rays. Diffusive shock acceleration appears at present to be this common accelerator. Hence, anomalous cosmic rays, thought to be accelerated at the solar-wind termination shock, provide a relatively accessible laboratory for the study of the mechanism of cosmic-ray acceleration. Observations showing a transition from singly-charged anomalous cosmic-ray oxygen to multiply-charged at an energy of some 250 MeV support the picture of acceleration at the quasi-perpendicular termination shock. Such acceleration may be important in other sources, as well. The basic physics of this acceleration process is discussed in some detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them – “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号