首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules.  相似文献   

2.
The Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) is finally disposed for long-term multi-generation experiments with aquatic organisms in a space station. Therefore a minimum operation time of three months is required. It is verified in three versions of laboratory prototypes. The third one passed successfully a 12 months mid-term test in 1995/96 thus demonstrating its high biological stability. The third version of the C.E.B.A.S. consists of a 100 l animal tank, two plant cultivators with a volume of 15 l each with independent illuminations, a 3.0 l semibiological "mechanical" filter, a 3.0 l bacteria filter, a heating/cooling device and a dummy filter unit. The live-bearing teleost Xiphophorus helleri is the vertebrate and the pulmonate water snail Biomphalana glabrata the invertebrate experimental animal in the system. The rootless higher water plant Ceratophyllum demersum is the producer organism. Ammonia oxidizing bacteria and other microorganisms settle in the filters. A sample data acquisition is combined with temperature and plant illumination control. Besides of the space aspects the C.E.B.A.S. proved to be an extremely suitable tool to investigate the organism and subcomponent interactions in a well defined terrestrial aquatic closed ecosystem by providing physical, chemical and biological data which allow an approach to a comprehensive system analysis. Moreover the C.E.B.A.S. is the base for the development of innovative combined animal-plant aquaculture systems for human nutrition on earth which could be implemented into bioregenerative life support systems with a higher degree of complexity suitable for lunar or planetary bases.  相似文献   

3.
The original Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is a long-term multi-generation research facility for experiments with aquatic animals and plants in a space station the development of which is surrounded by a large international scientific program. In addition, a miniaturized laboratory prototype, the C.E.B.A.S. MINI MODULE, with a total volume of about 10-12 liters for a Spacelab middeck locker was developed and a first version was tested successfully for two weeks with a population of fishes (Xiphophorus helleri) in the animal tank and a Ceratophyllum spec. in the illuminated higher plant growth chamber. The water recycling system consisted of a bacteria filter and a mechanical filter and the silastic tubing gas exchanger was separated by valves for the utilization in emergency cases only. Data were collected with the acquisition module of the original C.E.B.A.S. process control system. In addition, an optimized version was tested for 7 weeks with fishes and plants and thereafter with fish and with plants only for 2 and 1 weeks, resp.. The paper presents the relevant water parameters (e.g., pH, pressure, temperature, oxygen saturation, flow rate, ion concentrations) during the test period as well as morphological and physiological data of the enclosed animals and plants. On the basis of the given results the possible role of the C.E.B.A.S. system as a scientific tool in artificial ecosystem research and for the development of a combined animal-plant intensive aquaculture system and its utilization in bioregenerative life support is discussed.  相似文献   

4.
The C.E.B.A.S.-Minimodule, a closed aquatic ecosystem integrated into a middeck locker and consisting of a Zoological (animal tanks), a Botanical (plant bioreactor), a Microbial (bacteria filter) and an Electronic Component (data acquisition/control system) was flown on the STS-89 spaceshuttle mission in January 1998 for 9 days. Preflight the plant bioreactor was loaded with 53 g of Ceratophyllum demersum (coontail) and the animal tanks with 4 adult pregnant females of the fish, Xiphophorus helleri (sword-tails), 200 juveniles of the same species less than 1 week of age, 38 large and 30 juvenile Biomphalaria glabrata water snails. The filter compartment was filled with 200 g of lava grain inoculated with laboratory strains of ammonia-oxidizing bacteria. A ground reference was undertaken with the same biological setup with a delay of 4 d. After an adaptation period of 5 d the system was closed and integrated into the spaceshuttle one day before launch. Video recordings of the animals were automatically taken for 10 minutes in 2-hour periods; the tapes were changed daily by the astronauts. The chemical and physical data for the aquatic system were within the expected range and were closely comparable in comparison to the ground reference. After 9 d under space conditions, the plant biomass increased to 117 g. The plants were all found in very good condition. All 4 adult female fish were retrieved in a good physiological condition. The juvenile fishes had a survival rate of about 33%. Almost 97% of the snails had survived and produced more than 250 neonates and 40 spawning packs. All samples were distributed according to a defined schedule and satisfied all scientific needs of the involved 12 principal investigators. This was the first successful spaceflight of an artificial aquatic ecosystem containing vertebrates, invertebrates, higher plants and microorganisms self-sustained by its inhabitants only. C.E.B.A.S. in a modified form and biological setup is a promising candidate for the early space station utilization as a first midterm experiment.  相似文献   

5.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   

6.
C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utilization in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recyling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related research. It further on discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.  相似文献   

7.
A number of space-based experiments have been conducted to assess the impact of microgravity on plant growth and development. In general, these experiments did not identify any profound impact of microgravity on plant growth and development, though investigations to study seed development have indicated difficulty in plants completing their reproductive cycle. However, it was not clear whether the lack of seed production was due to gravity effects or some other environmental condition prevailing in the unit used for conducting the experiment. The ASTROCULTURE (TM) flight unit contains a totally enclosed plant chamber in which all the critically important environmental conditions are controlled. Normal wheat (Triticum aestivum L.) growth and development in the ASTROCULTURE (TM) flight unit was observed during a ground experiment conducted prior to the space experiment. Subsequent to the ground experiment, the flight unit was transported to MIR by STS-89, as part of the U.S. Shuttle/MIR program, in an attempt to determine if super dwarf wheat plants that were germinated in microgravity would grow normally and produce seeds. The experiment was initiated on-orbit after the flight unit was transferred from the Space Shuttle to MIR. The ASTROCULTURE (TM) flight unit performed nominally for the first 24 hours after the flight unit was activated, and then the unit stopped functioning abruptly. Since it was not possible to return the unit to nominal operation it was decided to terminate the experiment. On return of the flight unit, it was confirmed that the control computer of the ASTROCULTURE (TM) flight unit sustained a radiation hit that affected the control software embedded in the computer. This experience points out that at high orbital inclinations, such as that of MIR and that projected for the International Space Station, the danger of encountering harmful radiation effects are likely unless the electronic components of the flight hardware are resistant to such impacts.  相似文献   

8.
Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588.  相似文献   

9.
Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and lambda-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z < or = 4) the cross section decreases with increasing energy. For ions of Z = 10, it is nearly independent of energy. For heavier ions (Z > or = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a "mutagenic belt" inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.  相似文献   

10.
A wide variety of technical and science questions arise when attempting to envision the long-term support of plants, algae and bacteria in space. Currently, spaceflight data remain elusive since there are no U.S. carriers for investigating either the germane technical or scientific issues. The first flight of the Commercial Experiment Transporter (COMET) will provide a nominal 30 day orbital opportunity to evaluate such issues. The P-MASS is a small payload that is designed to meet the mass (40 lbs.), volume (1.5 cu.ft.), and power (120 W) constraints of one of several COMET payloads while enabling flight evaluations of plants, algae and bacteria. Various P-MASS subsystems have been subjected to extensive ground tests as well as KCl35 tests. Various biological sub-systems have been similarly evaluated. Through a variety of sensors coupled with color video, the P-MASS performance and the supported biological systems will be compared for terrestrial controls versus spaceflight materials. This small, low cost payload should return valuable information regarding the requirements for hardware and biological systems needed to move toward bioregenerative life support systems in space. In addition, it should be possible to accurately identify major unresolved difficulties that may arise in the long-term, spaceflight support of various biological systems. Finally, this generic spaceflight capability should enable a variety of plant research programs focused on the use of microgravity to modulate and exploit plant products for commercial applications ranging from new agricultural products to pharmacological feedstocks and new controlled agricultural strategies.  相似文献   

11.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   

12.
The miniature cenosis consisting of the water fern Azolla with its associated symbiotic nitrogen-fixing cyanobacterium Anabaena and the concomitant bacteria was investigated. Ecological closure was shown to produce sharp quantitative and qualitative changes in the number and type of concomitant bacteria. Changes in the distribution of bacterial types grown on beef-extract broth after space flight were recorded. Anabaena azollae underwent the most significant changes under spaceflight conditions. Its cell number per Azolla biomass unit increased substantially. Thus closure of cenosis resulted in a weakening of control over microbial development by Azolla. This tendency was augmented by spaceflight factors. Reduction in control exerted by macro-organisms over development of associated micro-organisms must be taken into account in constructing closed ecological systems in the state of weightlessness.  相似文献   

13.
The C.E.B.A.S.-Minimodule (Closed Equilibrated Biological Aquatic System) is a space qualified aquatic microcosm of 8.6 liters volume of water. Several aquatic species can be reared in parallel. Based on its characteristics (closed system, highly standardized, testruns longer than 4 weeks are possible, organisms of different trophic levels can be investigated) an improved module (C.B.R.U.=Closed Biological Research Unit) is under development for scientific and commercial use in ecotoxicology. In a two year project named AToxMss (Aquatic EcoToxicology in a Multispecies System) this goal can be reached. AToxMss is a R&D project of an industry team and two teams of the University of Bremen, funded by industry (OHB-System AG) and the state of Bremen, Germany. Three project phases are already completed: The parameter determination to indicate potential impact of chemicals on biological systems, the selection of test substances, as well as the manufacturing of 3 functional modules, each verified for use in ecotoxicological research. The next phase starts with a series of test runs calibrating the system by using well known toxic substances and chemicals.  相似文献   

14.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   

15.
In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in vitamin C and carotene and partly vitamin B group as well as rough fiber.  相似文献   

16.
地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究   总被引:14,自引:0,他引:14  
文章介绍了15年地球同步轨道环境对卫星表面太阳吸收率性能影响的试验模拟研究,研究结果为长寿命卫星热设计及热控涂层选择和研制提供可靠依据;介绍自行研制的空间低能综合环境试验设备、太阳吸收率原位测试系统和空间低能综合环境模拟试验方法,并对航天器常用的S781白漆、SR107ZK白漆、F46镀银和OSR二次表面镜热控材料进行空间低能综合环境模拟试验,获得了这些热控涂层在地球同步轨道15年期间太阳吸收率性能退化模拟数据,与已有的飞行试验数据进行对比研究,取得满意的结果。  相似文献   

17.
A general outline of the symposium titled "Mechanisms underlying cellular radiosensitivity and R.B.E." will be given in the introduction. The essential topics of molecular radiation biology are described with respect to the damage, repair and mutagenesis caused by high-LET irradiation to cellular DNA. The importance of clustered DNA lesions (locally multiply damaged sites) formed in vivo is discussed. This symposium is devoted to the mechanisms of the biological effects of radiation with high LET, especially with regard to the effects of heavy ions and neutrons which may cause possible risks in space flight, (e.g. carcinogenesis and mutagenesis). Detailed understanding of these risks, however, demands knowledge of the molecular mechanisms involved in the biological effects of high-LET radiations. Thus, it was the organizers' idea to hold a symposium dealing with primary physical and chemical events caused in cellular deoxyribonucleoproteins by densely-ionizing radiations and to relate them to track structures and energy transfer processes. The mechanisms of DNA damage were regarded from different points of view including those considering DNA repair and mutagenesis. Problems associated with cell survival and radiation protection were discussed as well. Our knowledge of the molecular mechanisms of high-LET radiation actions, however, is limited compared to what we know about low-LET radiation effects (e.g. from gamma-rays or X-rays). To emphasize this statement, I would like to summarize briefly the open questions in molecular radiation biology, what we know already about low-LET effects and what is lacking describing the effect of high-LET radiation.  相似文献   

18.
A mathematical model concerning the interaction of plants and rhizospheric microorganisms on complete mineral medium and under nitrogen limitation has been constructed. The model takes into account the closeness of plants and microorganisms in terms of the matter released by the plant and consumed by the microorganisms. The effect of rhizospheric microorganisms on plant growth with normal carbon dioxide and complete mineral medium has been demonstrated. Plants interacting with microorganisms have a greater biomass than plants growing without microorganisms. Wheat growth stimulation by metabolites of rhizospheric microorganisms under laboratory conditions on artificial soil has been experimentally demonstrated (Pechurkin, 1997). Under nitrogen limitation, the biomass of plants, with or without microorganisms, is identical, and is substantially reduced as compared with the medium with standard nitrogen.  相似文献   

19.
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification.  相似文献   

20.
失重飞机上进行的电泳分离实验   总被引:1,自引:0,他引:1  
介绍了用A3—l连续自由流电泳仪在俄罗斯失重飞机上进行的实验情况及结果.进行了4个架次的飞行试验,获得了飞行试验的数据和电泳分离图像.试验结果表明,电泳仪装置工作良好,从分离图像可以看出重力变化对电泳分离过程的影响并证实微重力环境对生物材料的电泳分离是有利的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号