首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma and tissue lipids in male SPF Wistar rats flown for 18.5 days aboard the Cosmos 936 biosatellite were analyzed. One group of rats was subjected to artificial gravity by use of a centrifuge during the flight. An experiment simulating known space flight factors other than weightlessness was done on Earth. An increase of total cholesterol in plasma, of nonesterified fatty acids in plasma and brown adipose tissue, of triacylglycerols in plasma, liver, thymus and bone marrow was noted several hours after biosatellite landing. Smaller changes were observed in the terrestrial control experiment. With the exception of triacylglycerol accumulation in bone marrow, these increases disappeared 25 days after biosatellite landing. Exposing the rats aboard the biosatellite to artificial gravity was beneficial in the sense that such exposure inhibited the phospholipid and triacylglycerol increase in plasma and inhibited the increase of triacylglycerol in liver and especially in bone marrow.  相似文献   

2.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5–19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.  相似文献   

3.
4.
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.  相似文献   

5.
飞机座舱显示界面脑力负荷测量与评价   总被引:1,自引:2,他引:1  
脑力负荷是影响飞行安全的重要因素之一,对飞行员脑力负荷进行客观测量,对于飞机座舱显示界面脑力任务的工效评价与优化设计具有重要意义.基于ERP(Eveat Related Potential)技术,选取失匹配负波(MMN,Mismatch Negativity)和P3a成分为指标,采用三刺激“oddball”模式,在飞行模拟任务条件下开展了三级脑力负荷的测量与评价研究.实验结果表明,MMN峰值和P3a峰值对脑力负荷变化敏感,随着脑力负荷的增加,MMN峰值显著增加,而P3a峰值显著降低,反应了被试者对异常信息的自动加工能力的提高以及朝向注意能力的减弱.与新异刺激相比,由偏差刺激所诱发的MMN与P3a成分对于与飞行任务相关的脑力负荷具有更好的敏感性,将可用于进一步的脑力负荷分级评价.   相似文献   

6.
The purpose of the present study was to analyze and predict the changes in acceleration tolerance of human vertebra as a result of bone loss caused by long-term space flight. A human L3–L4 vertebra FEM model was constructed, in which the cancellous bone was separated, and surrounding ligaments were also taken into account. The simulation results demonstrated that bone loss has more of an effect on the acceleration tolerance in x-direction. The results serve to aid in the creation of new acceleration tolerance standards, ensuring astronauts return home safely after long-term space flight. This study shows that more attention should be focused on the bone degradation of crew members and to create new protective designs for space capsules in the future.  相似文献   

7.
Space flight experiments on Chinese silkworm (Bombyx mori L.) were conducted on board the Russian 10th Biosatellite for 12 days. The samples included silkworm eggs, larvae, cocoons, pupae and moths. The processes of spinning, cocooning, mating, oviposition, larval hatching, pupation and moth emergence all completed well in space. The following effects of space flight on silkworm development were observed: The times of hatching and oviposition in the flight group were 2 to 3 days earlier than in the control group; the hatching rate of diapause eggs during space flight seemed higher than that of the control group; the life span of 2 of the 7 varieties flown was shortened; genetical variations appeared in 3 varieties. The results showed that the embryonic stage was probably the period most sensitive to the space flight environment.  相似文献   

8.
The objectives of this experiment are to perform natural fertilization and to achieve embryonic development in microgravity. Pleurodeles waltl, an urodele amphibian, is considered by CNES and NASA to be suitable experimental material for achieving in vivo fertilization in space. Previously inseminated females can be embarked in the Frog Environmental Unit (FEU) developed by NASA. Laying of eggs will be provoked by hormonal stimulation in flight and development will be followed. Various technical problems have been resolved in laboratory experiments and during parabolic flights : the time of hormone stimulation after insemination, choice of hormone guaranteeing [correction of guarenteing] 95% success, other factors conditioning [correction of conditionning] the laying, experimental procedures to study developmental kinetics at phenotypic levels, and selection of cellular and molecular markers of development.  相似文献   

9.
In long duration space experiments Rice caryopses and embryos, which are able to remain alive 10 years (or more) and tolerate extreme physical conditions (temperature, few water content) during irradiation and post-irradiation storage, were used (8, 40, 201 and 457 days on board of Salyut 7, 2107 days on LDEF). In certain experiments (Salyut 7), samples were irradiated either before or after the flight. Effects of the flight and radiosensitivity were observed in Rice seedlings cultivated in in vitro conditions. Statistical results indicate an increase in radiosensitivity when irradiations occur before the flight. Microanalyses were made in different parts of one caryopsis and of one embryo, and the results compared with those of control samples. With caryopses and embryos of the same Rice varieties, but from LDEF, we made the same kinds of experiments to compare results.  相似文献   

10.
This paper reviews the medical operations performed on six European astronauts during seven space missions on board the space station Mir. These missions took place between November 1988 and August 1999, and their duration ranged from 14 days to 189 days. Steps of pre-flight medical selection and flight certification are presented. Countermeasures program used during the flight, as well as rehabilitation program following short and long-duration missions are described. Also reviewed are medical problems encountered during the flight, post-flight physiological changes such as orthostatic intolerance, exercise capacity, blood composition, muscle atrophy, bone density, and radiation exposure.  相似文献   

11.
能量在0.1~1keV范围的软X射线辐射在空间科学任务中具有重要应用.飞行前的辐射定标试验及地面辐射定标系统采用传统单色仪分光时,由于波长的整数倍关系带来的高次谐波污染问题非常严重.高次谐波在光束中的占比严重影响了软X射线探测仪器的定标数据精度.本文探讨了无谐波单极衍射技术在产生具有高单色性能的软X射线光束中的应用,基于单极衍射光栅技术实现软X射线无谐波单色仪设计.软X射线无谐波单色仪应用于空间辐射定标系统时能够将高次谐波占比抑制到0.3%以下,满足空间软X射线科学仪器高精度辐射定标试验对高次谐波抑制的要求.   相似文献   

12.
Primordial germ cells (PGCs), precursors of germline cells, display a variety of antigens during their migration to target gonads. Here, we used silk chicken offspring (Gallus gallus domesticus) embryos subjected to space microgravity to investigate the influence of microgravity on PGCs. The ShenZhou-3 unmanned spaceship carried nine fertilized silk chicken eggs, named the flight group, returned to Earth after 7 days space flight. And the control group has the same clan with the flight group. PGCs from flight and control group silk chicken offspring embryos were examined during migration by using two antibodies (2C9 and anti-SSEA-1), in combination with the horseradish peroxidase detection system, and using periodic acid-Schiff’s solution (PAS) reaction. After incubation for about 30 h, SSEA-1 and 2C9 positive cells were detected in the germinal crescent of flight and control group silk chicken offspring embryos. After incubation of eggs for 2–2.5 days, SSEA-1 and 2C9 positive cells were detected in embryonic blood vessels of flight and control group silk chicken offspring embryos. After incubation of eggs for 5.5 days, PGCs in the dorsal mesentery and gonad could also be identified in flight and control group silk chicken offspring embryos by using SSEA-1 and 2C9 antibodies. Based on location and PAS staining, these cells were identified as PGCs. Meanwhile, at the stage of PGCs migration and then becoming established in the germinal ridges, no difference in SSEA-1 or 2C9 staining was detected between female and male PGCs in flight and control group silk chicken offspring embryos. Although there were differences in the profiles of PGC concentration between male and female embryos during the special circulating stage, changing profile of PGCs concentration was similar in same sex between flight and control group offspring embryos. We concluded that there is little effect on PGCs in offspring embryos of microgravity-treated chicken and that PGC development appears to be normal.  相似文献   

13.
Space flight, microgravity, stress, and immune responses.   总被引:4,自引:0,他引:4  
Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established. Grant Numbers: NCC2-859, NAG2-933.  相似文献   

14.
脑力负荷对前注意加工的影响与分析   总被引:1,自引:1,他引:0  
为研究与飞行任务相关的脑力负荷对听觉前注意加工的影响,采用14名被试者在不同脑力负荷下开展飞行模拟实验,并记录失匹配负波(MMN, Mismatch Negativity)作为听觉前注意加工的评价指标.被试者需要在飞行模拟器上完成包括起飞、巡航、降落在内的完整飞行过程,同时对平视显示器所呈现的目标信息状态进行监视,并对异常信息进行响应.实验通过设定目标信息的数量及刷新频率来控制被试者的脑力负荷水平.实验结果表明:脑力负荷对额中央区MMN影响显著,可为复杂飞行任务的脑力负荷评价提供一定的电生理依据.  相似文献   

15.
Cells of the mammalian pituitary gland synthesize and secrete several protein hormones which regulate a number of organ systems throughout the body. These include the musculoskeletal, immune, vascular and endocrine systems. Since changes occur in these tissues as a result of spaceflight, and since pituitary growth hormone (GH) and prolactin (PRL) play a role in the control of these systems on earth, we have focused attention over the last 10 years on GH and PRL cell function during and after spaceflight. The cumulative results of 4 spaceflight missions and several mimicked microgravity experiments establish 1) that production and release of biologically active GH and PRL is repeatedly and significantly attenuated (usually > 50%) and 2) that changes in cell morphology also occur. In this paper we describe our results within the framework of methodologies and approaches frequently used to study pituitary cell function on earth. In so doing we hope to develop future flight experiments aimed at uncovering possible microgravity "sensing systems" within the pituitary cell.  相似文献   

16.
Effects of space flight and IGF-1 on immune function   总被引:1,自引:0,他引:1  
We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2 secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.  相似文献   

17.
Spermatogonial cell loss has been observed in rats flown on Space Lab 3, Cosmos 1887, Cosmos 2044 and in mice following irradiation with X-ray or with high energy (HZE) particle beams. Spermatogonial loss is determined by cell counting in maturation stage 6 seminiferous [correction of seminferous] tubules. With the exception of Iron, laboratory irradiation experiments (with mice) revealed a similar pattern of spermatogonial loss proportional to the radiation dose at levels less than 0.1 Gy. Helium and Argon irradiation resulted in a 5% loss of spermatogonia after only 0.01 Gy exposure. However, significant spermatogonial loss (45%) occured at this radiation level with Iron particle beams. The loss of spermatogonia during each space flight was less than 10% when compared to control (non-flight) animals. This loss, although small, was significant. Although radiation may be a contributing factor in the loss of spermatogonia during space flight, exposure levels, as determined by dosimetry, were not significant to account for the total cell loss observed.  相似文献   

18.
The effect of weightlessness on chromosomal aberration frequency in preflight irradiated Crepis capillaris seeds, on the viability, fertility and mutation frequency in Arabidopsis thaliana, and on the frequency of nondisjunction and loss of X chromosomes in preflight irradiated Drosophila melanogaster gametes was studied aboard the Salyut 6 orbital station. The following effects were observed: a flight-time dependent amplification of the effects of preflight
-irradiation in A. thaliana with respect to all the parameters studied; unequal effects in seeds and seedlings of Crepis capillaris; and a significant increase in the frequency of nondisjunction and loss of chromosomes during meiosis in Drosophila females. These observations are discussed in terms of the data of ground-based model experiments and flight experiments with a different time of exposure of objects to weightlessness. An attempt is made to elucidate the role of weightlessness in the modification of ionizing radiation effects.  相似文献   

19.
Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course atudies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.  相似文献   

20.
The first cosmonauts were selected from the flying personnel. These individuals enjoying good health were more familiar with the conditions and effects of the factors similar to those which are to be found in space missions. In future, because of the complication of tasks to be solved in space missions, an inflight utilization and testing of sophisticated space technology, and conducting a broad spectrum of scientific studies, a demand arose for including cosmonaut-researchers--highly qualified representatives of various scientific specialities--in a flight crew. In this connection, a necessity was created for changing some evaluation criteria to assess the health status of the chosen candidates considering their age and physical fitness. In specific cases, during the selection process some health-improving measures related to professional significance of the candidates for a position of cosmonaut-researcher was carried out. The prime goal of cosmonauts selection is to predict their good tolerance for a particular space mission while maintaining health and adequate performance throughout the flight, completing the flight tasks and assuring successful return to the Earth. Inclusion of cosmonaut-researchers in space crews requires study of an effect of spaceflight factors on reactions of female subjects in simulated ground-based investigations. At present, the preparation of cosmonauts, can be defined as a continuous purposeful process of training, forming and maintaining operational skills, bringing up the crewmembers to acquire professionally significant psychological and physical features essential for effective work to be done in space mission. The preparation of cosmonauts consists mainly of technical, aviation and space, medical-biological and scientific trainings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号