首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To investigate the deflection effect of gas plasma plume controlled by magnetic field, a novel experimental scheme was presented. The Cs2CO3 catalytic ionization seeds were injected into the combustion chamber to obtain gas plasma on a high temperature magneto hydrodynamic (MHD) experiment rig. The plasma jet was deflected under the action of an external magnetic field, resulting in a thrust-vector effect. Particle image velocimetry (PIV) collected two-dimensional images of jet flow field. Through image processing and velocity vector analysis, the jet deflection angle can be obtained quantitatively. At 1800-2500K, the jet deflection was verified experimentally under the condition of 0.45T magnetic field strength. The results indicate that the jet deflection angle increases gradually with the increase of gas temperature, and above 2200K, the jet deflection angle increase obviously. In the process of gas plasma jet, it is feasible to realize the jet deflection controlled by MHD by adding an external magnetic field.  相似文献   

2.
To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to the staggered electrodes, that is, a pair of electrodes on the same side wall are connected to generate an axial current in the channel. Under the action of the magnetic field perpendicular to the direction of the flow, the plasma is subjected to electromagnetic forces perpendicular...  相似文献   

3.
基于激波风洞的超声速磁流体动力技术实验系统   总被引:9,自引:1,他引:9  
李益文  李应红  张百灵  金迪  陈峰  朱涛 《航空学报》2011,32(6):1015-1024
开展磁流体(MHD)动力技术实验研究,实验系统必须满足两项基本的条件:一是超声速或高超声速气流;二是气流必须是导电流体.基于此,介绍了基于激波风洞的超声速磁流体动力技术实验系统的基本组成、设计思想和调试情况.设计了马赫数Ma=2的超声速喷管及实验段;采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入...  相似文献   

4.
张炎  黄护林 《航空动力学报》2008,23(6):1024-1030
采用诱导磁场方程,Mixture混合两相流和磁场修正的湍流两方程模型,研究施加不同强度磁场时,收敛喷管内等离子体的流动和传热特性以及等离子体对尾喷流的包裹情况.结果表明,随着气流在收敛喷管内加速,等离子体被掺混的程度增加.增强磁场可提高近壁面处等离子体体积分数,抑制其湍流度,降低高温气体向喷管壁面的传热.当By=1.3T时,磁控等离子体可降低54.4%的壁面温升,增加0.74%的喷管推力系数,在出口4倍当量直径处对尾气仍有一定的包裹.   相似文献   

5.
《中国航空学报》2020,33(12):3460-3468
The YSZ coatings are prepared by the plasma spray-physical vapor deposition (PS-PVD) technology based on a specific experimental design. The structure, thickness and growth angle of YSZ coatings on the entire circumferential surface of the cylindrical sample are studied. The results indicated that the structure, thickness and deflection growth angle of YSZ coatings are related to the orientation of deposition location. The numerical simulation of the multiphase mixed fluid near the substrate is carried out and the deposition regularity and mechanism of YSZ coatings prepared by PS-PVD is deduced. The growth rate is related to the local characteristics of the plasma flow field, and is directly proportional to the field pressure and inversely proportional to the field velocity. The growth angle of the coating is generally affected by the flow direction of the plasma jet. Especially, the normal component of velocity vector, Vnorm, mainly affects the speed at which the coating grows vertically upwards. The tangential component of velocity vector, Vtan, determines the degree that the coating growth direction deviates from the vertical direction. When Vtan ≠ 0, the coating forms a fine column with a certain deflection angle and finally develops into an oblique columnar structure.  相似文献   

6.
Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System (GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2 (hereinafter, Mixed Inert Gas (MIG)), while that in the On-Board Inert Gas Generation System (OBIGGS), which is one of the most widely used fuel tank inerting technologies, is Nitrogen-Enriched Air (NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels, so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.  相似文献   

7.
舵面矢量喷流对现代战斗机气动特性的影响   总被引:2,自引:0,他引:2  
邓学蓥  王延奎 《航空学报》1998,19(3):257-262
在双三角翼、椭圆机身的先进战斗机气动布局中配置舵面矢量推力装置,系统研究了该舵面矢量推力装置引起的纵向矢量喷流和横向矢量喷流对机翼绕流及其气动特性的影响,同时还研究了舵面矢量喷流的落压比NPR、舵面的纵向和横向偏角Dp、Dy以及纵向舵面的宽度W和舵面的配置等因素对喷流干扰效应的影响。  相似文献   

8.
RP-3航空煤油替代燃料简化机理及其验证   总被引:2,自引:1,他引:2  
颜应文  戴超  李井华 《航空动力学报》2016,31(12):2878-2887
选定正癸烷作为RP-3航空煤油单组分替代燃料,建立了一种包含36组分62步基元反应的简化机理.并设计了本生灯预混预蒸发试验系统对RP-3航空煤油的火焰进行了试验研究.同时,采用两种已被验证的煤油简化机理(分别为23步和38步)及62步简化机理对本生灯预混预蒸发燃烧火焰进行数值模拟,并将计算结果和试验数据相对比.结果表明:在轴向,温度和CO2体积分数呈先上升后下降的趋势,并且温度在距喷口轴向距离为0.020m时达到最大值;而O2体积分数呈现下降后上升的趋势,并且距喷口轴向距离为0.025m时达到最小值.与38步简化机理和23步简化机理所获得的数据相比,在各工况下,62步简化机理计算所获得的火焰温度分布和O2体积分数分布与试验数据能很好地吻合;同时,62步简化机理计算的CO2体积分数分布与试验数据变化规律基本一致,而23步和38步机理的计算结果只能保持和试验数据变化趋势的一致性.因此,选定的正癸烷可作为RP-3航空煤油的单组分替代燃料,并且所获得的62步简化机理能在较大范围内反映RP-3航空煤油的燃烧性能.  相似文献   

9.
为改善极端条件下航空煤油的点火和燃烧性能,提高煤油活性,本文在大气压氮气环境下利用纳秒脉冲电源产生的滑动弧等离子体进行煤油裂解实验研究,得到了包含活性更高的气态轻质烃和氢气等小分子物质的裂解气。通过改变电源输出脉冲电压的上升沿时间和下降沿时间,得到了裂解气产量、碳氢比以及裂解气中各组分选择性的变化规律,并总结了相关的部分反应路径。实验结果如下:裂解气产量随着上升沿时间的增加而减小,随着下降沿时间的增加而上升,裂解气碳氢比则呈现相反的变化规律;裂解气主要组分中,乙烷选择性最高,在各实验工况下均超过30%;随着上升沿时间和下降沿时间的增加,裂解气中丙烷和丙烯的选择性均降低,氢气的选择性上升;上升沿时间和下降沿时间的变化对裂解效果产生影响的主要原因是改变了反应的路径。实验结果表明,纳秒脉冲滑动弧放电等离子体可以将煤油中的部分大分子烃类转化为气态轻烃和氢气等高活性组分。同时,增加纳秒脉冲电压下降沿时间能够改善滑动弧等离子体的裂解效果,获得更多活性更高的小分子物质。  相似文献   

10.
The acceleration of charged particles in the magnetic current sheets downstream from magnetic neutral lines is discussed and related to the plasma populations expected to be formed in a simple open model magnetosphere. A simple model of plasma acceleration in the dayside current sheet is set up, and it is shown that magnetospheric particles may take up a considerable fraction of the electromagnetic energy dissipated in the sheet even though they may represent only a small fraction of the total particle influx. The process should result in energetic ring current and ionospheric particles being found in boundary layers on either side of the magnetopause, and accelerated ionospheric particles in the plasma mantle. Acceleration of magnetosheath plasma in the dayside current sheet should result in enhanced flow speeds in these boundary layers, but the process may amount to little more than a return to the sheath plasma of energy previously extracted from it during its inflow on the dayside and stored in the compressed sheath field, due to the appreciable energy take-up from the current sheet by magnetospheric particles. The energy separation between ionospheric plasma and magnetosheath plasma on cusp field lines is shown to result in a spatial separation of polar wind and plasma mantle populations in the tail, the polar wind ions usually reaching out to only a few tens of R E down-tail such that they usually remain on closed field lines, forming a wedge-shaped region within the mantle shadow-zone. Polar wind ions are then convected back towards the Earth and thus their major sink is via the dayside current sheet rather than outflow into the tail. The major source for the plasmasheet depends upon the location of the neutral line, but mantle ions may usually be dominant. However, with a near-Earth neutral line during disturbed periods ionospheric plasma will be the sole ring-current source. Under usual conditions with a more distant neutral line the spatial separation of the two plasma sources in the tail may result in an energy separation in the inner ring current, with ionospheric particles dominant up to 2 to 20 keV and mantle ions dominant at higher energies. Formation of the plasmasheet is discussed, and it is shown that a layer of ions unidirectionally streaming towards the Earth should be formed on its outer boundary, due to current sheet acceleration of lobe particles and inward convection of the field lines. A similar process leads to earthward flows on the inner layer of the dayside cusp. Finally, the region tailward of the nightside neutral line is discussed and it is shown that a thin tailward flowing two-stream plasma band should be formed across the centre plane of the tail. The slow-speed stream corresponds to incoming lobe ions, the faster stream to the current sheet accelerated ions.  相似文献   

11.
Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication(MQL), and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%,respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%,and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube(CNT), and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore,the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used.Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased.Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.  相似文献   

12.
等离子体助燃对燃烧产物影响的实验   总被引:1,自引:2,他引:1  
采用介质阻挡放电在燃烧实验段中产生等离子体,进行了等离子体助燃条件下丙烷/空气混合气燃烧过程影响因素及其规律的实验研究.测量了空气、丙烷/空气混合气介质阻挡放电的光谱特性,通过烟气分析仪测量燃烧产物成份,得到了燃烧产物中O2,CO体积分数随时间的变化,研究了激励器放电电压、空气流量、丙烷流量对燃烧产物的影响.实验结果表明:等离子体助燃时,O2和CO体积分数变化速率增大;稳定燃烧后O2和CO体积分数小于常规燃烧的,燃烧效率提高;减小放电电压,增大空气、丙烷流量,等离子体助燃的效果减弱.   相似文献   

13.
Alfvén's Critical Ionization Velocity (CIV) phenomenon is reviewed, with the main emphasis on comparisons between experimental and theoretical results. The review covers (1) the velocity measurements in laboratory experiments, (2) the effect of wall interaction, (3) the experimental and theoretical limits to the magnetic field strength and the neutral density, (4) ionospheric release experiments, (5) theoretical models for electron energization in comparison to experimental results, and (6) CIV models. All laboratory investigations of the CIV are found to obey the three following simple rules of thumb: (1) if the magnetic field is so strong that V A > 3V 0, and if there is enough neutral gas that the Townsend condition is fulfilled, then the CIV effect occurs, (2) when it occurs, the threshold velocity (or E/B value) is within ± 50% of Alfvén's proposed value V c , and (3) for weaker magnetic fields, the effect gradually becomes irreproducible or weak and disappears altogether for V A < V 0. The theoretical understanding of the process has grown rapidly during the last decade, mainly due to the introduction of computer simulation models which have to a large degree confirmed and extended earlier analytical theories. The CIV mechanism is not due to one single plasma process, but to several different mechanisms which are applicable in different parameter regimes and geometries. The computer simulations have shown that in order to understand the mechanism properly it is necessary to consider a large number of interlocking collisional and plasma processes. The theoretical development has reached the stage where it should be possible to adapt computer simulation models to specific experiments and predict ionization rates, plasma flow velocities, E/B values, particle distributions, and wave spectra. Such models should for the first time provide a really firm basis for extrapolations of the CIV process to space applications.  相似文献   

14.
磁激等离子体超声速气流的瞬态加速系统及其实验研究   总被引:2,自引:0,他引:2  
朱涛  李应红  张百灵  陈峰  李益文 《航空学报》2012,33(8):1375-1383
研制了基于激波风洞的热电离系统,设计了马赫数Ma=1.5的喷管和分段法拉第型实验段,并选用了合理的磁场及电场方案。采用氦气驱动氩气模式,通过在激波管低压段注入电离种子K2CO3粉末实现气流的热电离;压缩后的高温氩气启动喷管,以瞬态超声速导电流体形式通过实验段。实验结果表明:当激波管高压段压力为1.1 MPa、低压段压力为500 Pa时,喷管出口的超声速导电气流温度约为4 185.91 K,压力约为0.037 MPa;当电容电压为400 V、磁感应强度为1.0 T时,由实验段中间位置电极的放电特性可以估算出气流电导率约为78.1 S/m,单对电极输入功率约为9.46 kW;用感应电压法对加速效果进行初步评估,出口气流速度增加了29.3%,电效率为26.1%。  相似文献   

15.
两电极等离子体高能合成射流激励器通过腔体内电极间的瞬时电弧放电加热腔内气体,在激励器出口产生压差并喷出高速射流,从而产生反作用力和冲量。针对两电极等离子体高能合成射流响应快、持续时间短的特点,设计了单丝扭摆式微冲量测量系统,并结合高速阴影系统,对两电极等离子体高能合成射流的流场发展过程及其单脉冲冲量特性进行了实验研究。实验结果表明,两电极等离子体高能合成射流响应时间小于10μs,射流持续时间约为1ms,射流前锋最大速度约为190m/s,射流流场发展过程中存在多道强压缩波,并以当地声速向下游传播。单丝扭摆式微冲量测量系统可实现μN·s量级冲量测量精度,单脉冲冲量约为32μN·s,并且在低频状态下射流总冲量随激励器放电频率成线性增加。  相似文献   

16.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   

17.
基于被动二次流的射流偏转比例控制   总被引:2,自引:1,他引:1  
射流偏转比例控制一直是流体式推力矢量(FTV)技术所追求的目标之一。本文研制了一种二元流体式推力矢量喷管,采用能量消耗极小的被动二次流与Conada壁面相结合的方式对低速主射流进行矢量偏转控制,通过改变喷管控制缝入口面积实现了主射流偏转的连续比例控制。对低速主射流两侧控制缝压力和射流偏转角进行测量,获得了主射流偏转角随两侧控制缝压力差系数变化的控制规律曲线。结果表明:低速主射流最大偏转角达到19°,在偏转范围内控制曲线分为敏感区和迟钝区。敏感区的控制曲线近似线性,斜率较大,范围约为±15°;而迟钝区的控制曲线斜率较小,在两侧15°~19°的范围内。该结果证实了主射流两侧的压力差是造成其偏转的直接原因。  相似文献   

18.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear and turbulent, exploring a wide range of wave frequencies, from 10−5Ωi to 10−1Ωi (where Ωi is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features of these objects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
曹熙炜  刘宇  谢侃  王一白 《航空动力学报》2010,25(10):2358-2362
为了研究气-粒两相流对固体火箭发动机燃气舵的影响,基于固体火箭发动机燃气舵的工作特点,在求解二维Navier-Stokes(N-S)方程的基础上,分别对有无颗粒相的流场进行了数值模拟,并且考虑了颗粒直径为1,10μm和30μm,颗粒质量分数为15%,20%和30%,舵偏角为0°,5°,10°及15°的各种组合工况.结果表明,在相同外界条件下,有颗粒相时舵表面的压力要大于无颗粒相时的表面压力,而且这种差别在迎风面和舵片前半部分表现得比较明显;在气动性能方面,有颗粒相时升力和阻力都要比无颗粒相时大,这种差别随颗粒直径的增大而减小,在一定颗粒质量分数范围内,随颗粒质量分数的增加而增大.   相似文献   

20.
气体状态方程对正十二烷射流燃烧的影响   总被引:1,自引:1,他引:0  
选取正十二烷作为航空煤油的替代燃料,应用大涡数值模拟方法和详细化学反应动力学相结合的方法对该燃料在超临界环境下的射流燃烧进行计算,研究其射流、燃烧及排放特性。重点考察了气体状态方程对射流形态、贯穿距、温度、混合分数等的影响。结果表明:理想气体和真实气体状态方程对仿真得到的射流贯穿距和宏观形态影响不大,而真实气体状态方程可以更好地反映在超临界环境下的液体燃料射流内部特征,如混合分数、温度;燃烧方面,仿真的点火延迟与实验存在10%的误差,火焰浮起长度、火焰形态、碳烟等均得到很好的预测,NOx与OH分布与温度场具有高度一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号