首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决航天服隔离助力系统与人体造成的人机运动协同问题,提出了基于肌肉神经活跃度建模的肌力特征识别方法,从肌电信号(EMG)量化分析了肌肉发力水平,而后根据肌肉实时发力意图对助力系统进行动力学控制,实现了航天员、航天服与助力系统的协同运动。最后,通过穿戴式柔索传动系统模拟了航天服肘关节助力工效实验,对基于肌肉神经活跃度的关节助力技术进行了验证。  相似文献   

2.
针对未来航天员月面行走的需要,对登月助力航天服下肢关节进行动力学仿真分析。基于月面行走的登月助力航天服结构设计理论,分析了航天服下肢关节阻力矩迟滞特性,采用Preisach迟滞模型对关节阻力矩进行仿真计算,得到关节阻力矩随角度变化曲线;按照登月航天服下肢运动角度、关节长度及质量分布,利用ADAMS建立航天员下肢二连杆动力学模型,得到登月航天服下肢关节驱动力矩随步态周期变化曲线。仿真结果表明,1个步态周期内航天服下肢关节阻力矩在驱动力矩所占比例可达50%,登月助力航天服下肢关节的迟滞特性能更准确地描述关节活动力矩特性,计算所得模型可为下肢驱动机构设计与运动控制系统提供理论依据。  相似文献   

3.
为了提高舱外航天服运动性能,保证航天员舱外活动的灵活性与舒适性,从生物学出发,以人体行走为例,研究了下肢膝关节运动特征及肌肉肌腱参数。首先从解剖学角度对人体下肢肌骨模型进行分析,其次对人体下肢关节的运动学、肌肉肌腱参数与动力学特征等进行研究,最后分析下肢膝关节力矩、角加速度与关节惯量的关系。结果表明:人体下肢膝关节处于最大屈曲位时,关节角加速度几乎同时达到最大;内外侧腓肠肌与股直肌分别在支撑期与摆动期提供重要力量;行走运动中的人体膝关节力矩与角加速度未呈现较好线性关系,但关节惯量与周期(时间)序列可完成较好线性拟合。该结果可为太空环境下的相关研究及舱外航天服的设计提供一定参考。  相似文献   

4.
航天服关节力矩特性的数学表述是预测航天员出舱(EVA)作业强度、评估航天员疲劳度、规划EVA活动路径的重要基础。首先,分析了关节力矩的特性,提出建立数学模型的要求,阐述了Jiles-Atherton磁滞模型原理,以及磁滞模型与关节力矩特性的相合性。其次,利用模拟退火算法的思想对遗传算法进行了改进,并基于MATLAB软件实现。最终,对EVA航天服腕关节和肩关节力矩进行仿真,得到关节力矩在特定活动角度下的数学模型。仿真结果表明,针对关节力矩迟滞特性所得的关节力矩数学模型,能够更准确地描述关节活动力矩特性,计算所得模型可以更便捷地用于航天服工效学等相关研究领域。  相似文献   

5.
面向出舱活动中航天员肌肉状态和体力负荷的风险评估,为了实现航天员肌肉激活的预测,开展了着常服和舱外服两种工况下不同操作位置的推、拉、提、压共8组典型功能操作实验,测试航天员最大施力能力的同时采集了肱二头肌长头、肱三头肌外侧头和三角肌前束的肌电信号。提出基于人-舱外服耦合运动生物力学模型预测着舱外服人体的肌肉激活,并预测了两种工况下8组典型功能操作的肌肉激活。通过预测结果和积分肌电值的相关性分析,验证了模型预测的有效性,为研究人-舱外服真实交互方式提供了新的方法学思路,对肌肉激活的预测为出舱活动任务规划提供了生理学依据。  相似文献   

6.
一种提高螺旋桨相同步噪声模型辨识精度的方法   总被引:1,自引:0,他引:1       下载免费PDF全文
曹云飞  黄向华  盛龙  夏天乾 《推进技术》2018,39(11):2571-2580
相同步降噪一般先通过一定飞行条件下的实测数据辨识出螺旋桨噪声模型,然后基于噪声模型计算出该条件下的最优相角,再将最优相角用于相同步降噪。在噪声模型辨识的过程中,受飞行速度、高度和气流变化等的影响,实测数据经常会发生较大的波动,从而影响辨识模型和最优相角的准确性。提出一种基于小波滤波和三参数正弦拟合法的最小数据波动的噪声数据选取方法,提高噪声模型的辨识精度,该方法通过小波滤波算法从噪声信号中提取出螺旋桨的叶尖通过频率信号,采用三参数正弦拟合算法合理地选择出波动最小的数据用于噪声模型辨识,从而有效地回避较大波动数据,提高辨识模型的精度。试验结果表明相较于传统使用固定数据辨识所得的噪声模型,使用最小波动数据辨识所得噪声模型能够获得更高的精度,且噪声模型预测的声压级和实际测量的声压级误差小于1dB,模型预测的最优相角与实际最优相角的误差小于5°,最优相角在试验位置点能够实现高达19.5dB的降噪效果。  相似文献   

7.
针对传统中值滤波算法的优缺点,结合椒盐噪声的特征,提出了一种有效的自适应中值滤波算法。首先依据椒盐噪声的特征,将图像像素分为噪声和信号,然后根据窗口内噪声点的个数自适应地确定滤波窗口的尺寸,仅对噪声像素进行中值滤波。但随着噪声密度和图像规模的增大,在CPU上执行的时间显著增加。分析并利用图形处理器(GPU)的并行处理特征,并在CUDA平台中实现了算法。实验结果表明,所提出的算法能够有效地去除椒盐噪声、保留边缘和细节,并且能显著缩短计算时间,随着噪声密度和图像规模的增大,最大加速比达到6 000倍。  相似文献   

8.
对于风洞试验中全尺寸模型试验的非平稳信号进行载荷辨识仍存在诸多问题。针对全尺度模型试验的非平稳信号载荷辨识提出了一种基于深度残差收缩网络(DRSN)深度学习技术的智能载荷辨识方法,该方法通过深度学习提取测力系统输出数据中的气动力、惯性力和噪声等特征,通过注意力机制对每组数据进行获取阈值,再通过软阈值函数对特征进行滤波降噪,有效辨识出测力系统响应信号中的惯性力分量并进行剔除,实现气动力载荷辨识。在测试验证中,均值法的辨识精度为85%以上,DRSN模型的辨识精度为94%以上,证明DRSN模型能有效降低噪声和惯性力对于载荷辨识的干扰,用于非平稳信号的载荷辨识具有精度高、可靠性好等特点。  相似文献   

9.
对于依靠RCS(反作用控制系统)进行控制的返回舱等跨大气层飞行器,如何获得其在真实飞行条件下RCS的控制力矩一直是一个难题。本文提出了采用系统辨识技术得到RCS控制力矩的思路,研究建立了基于最大似然准则和牛顿-拉夫逊迭代算法的参数辨识算法模型。仿真辨识及对某飞船返回舱实际飞行数据的辨识结果表明,本文建立的方法是有效的,利用其能够对飞行器的气动力矩和RCS控制力矩同时进行有效辨识。  相似文献   

10.
针对未来月球、火星等地外星体表面探测对舱外航天服下肢系统活动性的需求,探讨了充压航天服对航天员下肢运动的影响,进行了航天服下肢系统自由度配置、航天服-航天员下肢系统的建模、运动学和动力学分析。首先,结合人体生理结构特点和工效学要求,配置了具有12个自由度的航天服下肢关节系统。然后采用DH参数法,对单腿6自由度系统进行了正逆运动学分析,并利用拉格朗日方法建立了人服系统的动力学方程。最后,以直立行走和上下楼梯模拟不同路况,定量分析了航天员在未着服、着服未充压和着服充压状态下髋关节、膝关节和踝关节的力矩变化。结果表明,航天服质量、转动惯量和关节阻力矩将增加航天员的活动负荷;不同路况下,下肢各关节的力矩受到不同影响。未来星表探测航天服设计时,合理确定航天服质量、关节结构形式是非常必要的。  相似文献   

11.
目前,监测传感器传出信号中混有很多噪声,为提高信号可信度,需要一种有效的信号处理方法。文章基于Matlab仿真环境,完成了信号仿真和滤波算法的设计,重点对单传感器仿真信号的去噪和多传感器信息融合进行了研究,提出了基于中值滤波和小波阈值滤波的混合滤波方案和基于Kalman滤波的信号融合方案。研究工作有:基于高斯白噪声和脉冲噪声的数学特性,合理假设出5种基本信号形式;依据实际数据,完成单传感器和多传感器信号仿真,确定信噪比和均方根误差作为去噪评定指标;综合分析现有的滤波算法的滤波特性,利用不同长度滑动窗口的中值滤波处理实验信号,选取合适长度的滑动窗口。设置对比实验确定小波阈值滤波中的小波基函数选取、阈值计算和分解尺度等参数;融合中值滤波和小波阈值滤波优势,设计混合滤波方案,去除单传感器仿真信号中的噪声;研究信息融合理论在泄漏监测系统中的应用,设置不同融合方式下的对比实验,确立最佳融合方式下的Kalman滤波方案,实现多传感器信息融合。  相似文献   

12.
高空台进气压力控制系统具有大时滞特性,被控对象受到输入噪声、相位延迟等不确定因素的影响,导致控制系统难以精准控制,给控制器的设计带来挑战。针对该问题,首先采用基于跟踪微分器(TD)的测量噪声抑制对系统输入噪声进行估计,通过引入基于跟踪微分器与Fal函数滤波算法的相位补偿进行了补偿器设计。然后对高空台进气压力控制系统设计了跟踪微分器的测量噪声抑制算法,并进行了滤波特性分析。在设计相位补偿方法时,不仅考虑了测量信号中随机噪声的分离,还对微分信号中的抖动信号进行了滤波,使得系统初始信号和滤波后的光滑微分信号重新构成新的有用信号,最终解决了输出信号的相位滞后对控制精度影响的问题。通过数值模拟对经典fhan算法和提出的Fast+PA(Phase Advancer)算法进行了比较,验证了Fast+PA算法噪声抑制的优势。结果表明,Fast+PA算法通过调整重要参数滤波因子h0和向前预报补偿因子λ的值既能消除颤振及保证滤波的效率,又具有较好的相位补偿和动态响应能力。  相似文献   

13.
将主动噪声控制技术应用于地铁通风隧道的噪声控制上,其应用效果在很大程度上取决于信号处理的实时性。在保证控制算法收敛的基础上,要求算法收敛速度尽可能快,以确保对声波变化的准确跟踪,据此产生匹配的振幅相等、相位相反的次级声信号,进而对噪声进行控制。利用比例思想对LMS算法进行改进,为小系数配上小的步长因子,为大系数配上较大的步长因子。最后,将其应用在地铁通风隧道的次级声通道模型的辨识上,并与常用的LMS算法在收敛速度、稳态失调性能上做出比较。数值分析结果表明,采用改进后的LMS算法能够有效地加快算法收敛,改善算法的稳态失调性能。  相似文献   

14.
人体步态的动力学建模与仿真   总被引:3,自引:0,他引:3       下载免费PDF全文
把人体看作由13个刚体铰接所组成的多刚体系统,采用逆动力学方法建立起人体行走的动力学方程,以步态实验所得运动学数据为输入,计算出人体行走过程中各关节所受肌肉力矩、关节反作用力以及地面对人体的反作用力等动力学参数,并通过仿真分析,验证了建模方法的有效性。  相似文献   

15.
航天员太空飞行中,需要改变自身位置与朝向以完成不同的作业任务,当其无法触碰到手脚限制器等借助物时,会涉及通过自身动作的转换产生人体旋转的问题。为此,首先基于Roberson-Wittenburg方法建立了人体动力学方程,据此提出能够使得人体转动的肢体操作方法,然后采用悬吊法模拟太空失重环境,对比不同控制方法产生的旋转作用效果,发现肢体旋转时与身体的夹角和肢体旋转速度是影响人体旋转完成时间和关节力矩的主要因素,最后结合推荐动作与实验结果提出空间姿态变换运动的操作建议。结果表明本文推荐动作有一定的优越性,对航天员处于太空中的自旋转运动具有实用意义。  相似文献   

16.
介绍了声发射技术在铝合金结构试件疲劳试验中的应用;采用声发射信号滤波处理技术进行铝合金疲劳试验研究。通过分析和实验可以确定,采用声发射信号滤波技术能够对结构件疲劳裂纹的萌生和扩展做出判断。  相似文献   

17.
在星敏感器的使用过程中,由于外界环境的影响及传感器自身的限制,拍摄出来的星图不可避免地存在一些噪声,因此对星图进行去噪处理是一项非常重要的工作。针对传统高斯模板滤波存在的引入邻域噪声、无法自行根据星图特性修正等造成去噪效果不好的问题,提出了一种改进的星图降噪算法。该方法在滤波前先进行坏点剔除工作,并采用高斯低通滤波与高通滤波结合的方式对图像进行处理,在抑制噪声的同时有效地保留了星点信号。通过阐述星敏感器的工作原理,分析星图的噪声特性,对星图滤波去噪算法进行研究,并进行模拟星图影像提取星点坐标实验。结果表明:使用该算法进行滤波比传统的高斯滤波算法提取的质心坐标精确度更高,较传统方法横坐标提高0.00538个像素点,纵坐标提高0.0077个像素点,证实了图像处理算法的有效性。  相似文献   

18.
周启帆  张海  王嫣然 《航空学报》2015,36(5):1596-1605
针对目前自适应滤波算法的不足,在测量系统量测噪声方差未知的情况下,设计了一种基于冗余测量的自适应卡尔曼滤波(RMAKF)算法。通过对系统冗余测量值的一阶、二阶差分序列进行有效的统计分析,可以准确估计系统量测噪声统计特性,进而在滤波过程中自适应调节噪声方差阵R,提高滤波精度。以全球定位系统/惯性导航系统(GPS/INS)松组合导航系统为对象进行了仿真实验,结果表明该算法在测量系统噪声特性未知或发生改变时,可对其进行准确估计,在采用低精度惯性器件情况下,滤波结果较其他主要自适应卡尔曼滤波算法有较明显的改进。  相似文献   

19.
分析了发动机测量信号滤波需求,设计了针对传感器数据校正的中值滤波器和快速算法,给出了模拟发动机故障和变工况试验情况下的传感器输出,给出了滤波比较研究结果。数值实验和实际应用于涡轮试验测量数据滤波的结果表明,中值滤波器对于脉冲噪声可以完全剔除,对随机噪声也具有较好的抑制效果,并能够较好保持信号中的陡峭边沿等趋势成份。   相似文献   

20.
振动信号是航空发动机故障监测的常用信号。由于航空发动机结构复杂,对振动传感器的布置要求日益严格。声学信号以其非接触式、易布置、低成本的优点,在轴承智能故障诊断中引起了广泛的关注。然而,由于航空发动机内声信号所处的环境噪声较强,传统的轴承故障诊断方法无法实现精确的特征提取。为此,研究有效的特征提取方法实现轴承声信号下的智能故障诊断显得尤为重要。稀疏表示是智能故障诊断中的一个研究热点,在稀疏特征提取方面显示出强大的力量。对强噪声下的声信号进行有效的稀疏特征提取,可为轴承的非接触式故障诊断提供解决路径。提出一种基于并行稀疏滤波的轴承故障诊断方法,能够实现对轴承声信号的稀疏特征提取。并行稀疏滤波通过在传统稀疏滤波的基础上增加另一个归一化方向来实现进一步的稀疏特征提取,然后采用权值归一化方法约束训练得到的权值矩阵。最后,通过仿真和实验数据验证了所提方法的优越性。结果表明,并行稀疏滤波能够实现轴承声信号的有效稀疏特征提取和精准分类,可用于声学信号下的轴承智能故障诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号