首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小行星俘获(ACR)任务是美国Keck空间研究中心发起的一项深空探测任务。该任务计划选定一颗近地小行星,通过口袋式抓捕系统对其实施抓捕,并于2025年左右将其带回近月空间。文章介绍了ACR任务的内容和系统设计,具体包括:航天器总体构型、抓捕分系统、探测识别分系统和控制与推进分系统;对小行星抓捕的目标探测与识别、旋转匹配、抓捕、消旋、轨道转移等核心操作。基于ACR任务,提出了空间目标俘获技术的需求与应用、抓捕航天器系统设计的启示;基于我国目前的技术研究情况,总结分析了发展空间目标俘获任务所需的关键技术,如大功率柔性太阳翼、长时间大范围轨道机动、目标探测与识别、快速机动、目标抓捕与消旋。  相似文献   

2.
The Apophis Exploratory and Mitigation Platform (AEMP) concept was developed as a prototype mission to explore and potentially deflect the Near Earth Asteroid (NEA) 99942 Apophis. Deflection of the asteroid from the potential 2036 impact will be achieved using a gravity tractor technique, while a permanent deflection, eliminating future threats, will be imparted using a novel albedo manipulation technique. This mission will serve as an archetypal template for future missions to small NEAs and could be adapted to mitigate the threat of collision with other potential Earth-crossing objects.  相似文献   

3.
The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of “far-field survey” approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the “near-field survey” approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the “near-field survey” in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be used to perform these science objectives on a NEA. Specifically, the productivity and acceptability of simulated NEA exploration activities were systematically quantified and compared when operating with different combinations of crew sizes and exploration systems including MMSEVs, EVA jet packs, and EVA translation devices. Data from NEEMO 15 will be used in conjunction with data from software simulations, parametric analysis, other analog field tests, anchoring models, and integrated testing at Johnson Space Center to inform the evolving architectures and exploration systems being developed by the Human Spaceflight Architecture Team.  相似文献   

4.
This paper presents the sample return mission to a primitive Near-Earth Asteroid (NEA) MarcoPolo-R proposed to the European Space Agency in December 2010. MarcoPolo-R was selected in February 2011 with three other missions addressing different science objectives for the two-year Assessment Phase of the Medium-Class mission competition of the Cosmic Vision 2 program for launch in 2022. The baseline target of MarcoPolo-R is the binary NEA (175706) 1996 FG3, which offers an efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of a binary target allows several scientific investigations to occur more easily than through a single object, in particular regarding the fascinating geology and geophysics of asteroids. MarcoPolo-R will rendezvous with a primitive, organic-rich NEA, scientifically characterize it at multiple scales, and return a bulk sample to Earth for laboratory analyses. The MarcoPolo-R sample will provide a representative sample from the surface of a known asteroid with known geologic context, and will contribute to the inventory of primitive material that is probably missing from the meteorite collection. The MarcoPolo-R samples will thus contribute to the exploration of the origin of planetary materials and initial stages of habitable planet formation, to the identification and characterization of the organics and volatiles in a primitive asteroid and to the understanding of the unique geomorphology, dynamics and evolution of a binary asteroid that belongs to the Potentially Hazardous Asteroid (PHA) population.  相似文献   

5.
同波束VLBI技术用于月球双探测器精密定轨及重力场解算   总被引:1,自引:0,他引:1  
鄢建国  李斐  刘庆会  平劲松  李金岭 《宇航学报》2010,31(11):2536-2541
同波束VLBI通过同时观测两个探测器的多点频信号,可以得到两个探测器之间高精度的差分相位时延,日本月球探测计划SELENE充分体现了这一技术在月球探测器精密定轨中的贡献。本文针对采样返回的月球探测任务中,轨道器和返回器同时绕月飞行期间,研究利用同波束VLBI跟踪数据在探测器精密定轨和月球重力场仿真解算中的贡献。结果表明,加入同波束VLBI跟踪数据之后,探测器定轨精度有显著提高,改进超过一个量级。综合同波束VLBI跟踪数据解算得到的重力场模型相比于传统的USB双程测距测速数据,中低阶次位系数精度有明显改进,并且定轨精度有望能达到米级。
  相似文献   

6.
彭坤  杨雷 《宇航学报》2018,39(5):471-481
为提高空间站利用率,降低载人登月任务成本,有效开发地月空间,研究了基于地月空间不同轨道空间站的载人登月飞行模式。首先对比直接往返登月飞行模式,对基于空间站的载人登月飞行模式进行任务分析,通过空间站将载人登月任务解耦为载人天地往返任务和登月任务两部分;其次通过轨道设计和稳定性分析提出考虑登月任务需求的地月间空间站可运行轨道和停泊点;最后建立一套飞行模式评价模型,从速度增量需求、飞行时间、空间环境、登月任务窗口、测控条件、交会对接技术难度、后续任务支持性和任务可靠性方面对6种不同位置空间站的登月飞行模式进行分析和定量评价。评价结果表明基于L2点Halo轨道空间站的载人登月飞行模式为更优飞行模式。  相似文献   

7.
The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Space Exploration Vehicle (SEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA's integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either 0, 1, or 2 SEVs; 3 or 4 crewmembers; 1 of 2 different communications bandwidths; and a 50-second each-way communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a remote Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 50-second each-way communication latency to the field. Crews were composed of astronauts and professional field geologists. Teams of Mission Operations and Science experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, and Science teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one SEV and by including 4 versus 3 crewmembers in the NEA exploration architecture as measured by increased scientific data quality, EVA exploration time, capability assessment ratings, and consensus acceptability ratings provided by Crew, Mission Operations, and Science teams. A combination of text and voice was used to effectively communicate over the communications latency, and increased communication bandwidth yielded a small but practically significant improvement in overall acceptability as rated by the Science team, although the impact of bandwidth on scientific strategic planning and public outreach was not assessed. No effect of increased bandwidth was observed with respect to Crew or Mission Operations team ratings of overall acceptability.  相似文献   

8.
The far side of the moon is a unique place for some scientific investigations. Chang'e 4 is a Chinese lunar far side landing exploration mission. Relay communication satellite, named as Queqiao, is an important and innovative part of Chang'e 4 mission. It can provide relay communication to the lander and the rover operating on the lunar far side to maintain their contacts with Earth. It was launched by LM-4 C launch vehicle at the Xichang Satellite Launch Center on May 21, 2018. After five precise orbit controls and a journey of more than 20 days, Queqiao inserted into final halo mission orbit around Earth-moon libration point 2, located about 65,000 km beyond the moon. It is the world's first communication satellite operating in that orbit. Up to now, Queqiao worked very well and provided reliable, continuous communication relay service for the lander and the rover to ensure the mission success of Chang'e 4 exploration mission. Via Queqiao, the lander and the rover were controlled to work by ground stations and obtained a great amount of scientific data. The mission overview, operation orbit selection, relay communication system design and flight profile were introduced in this article.  相似文献   

9.
The human exploration of multiple deep space destinations (e.g. Cis-Lunar, NEAs), in view of the final challenge of sending astronauts to Mars, represents a current and consistent study domain especially in terms of its possible scenarios and mission architectures assessments, as proved by the numerous on-going activities about this topic and moreover by the global exploration roadmap. After exploring and analysing different possible solutions to identify the most flexible path, a detailed characterisation of several Design Reference Missions (DRMs) represents a necessity in order to evaluate the feasibility and affordability of deep space exploration missions, specifically in terms of enabling technological capabilities.The study presented in this paper was aimed at defining an evolutionary scenario for deep space exploration in the next 30 years with the final goal of sending astronauts on the surface of Mars by the end of 2030 decade. Different destinations were considered as targets to build the human exploration scenario, with particular attention to Earth–Moon Lagrangian points, NEA and Moon. For all the destinations selected as part of the exploration scenario, the assessment and characterisation of the relative Design Reference Missions were performed. Specifically they were defined in terms of strategies, architectures and mission elements. All the analyses were based on a pure technical approach with the objective of evaluating the feasibility of a long term strategy for capabilities achievement and technological development to enable future space exploration.This paper describes the process that was followed within the study, focusing on the adopted methodology, and reports the major obtained results, in terms of scenario and mission analysis.  相似文献   

10.
Long-term debris environment projections are of great importance for assessing the necessity and effectiveness of debris mitigation measures. Two types of models have been developed to predict these environments. Environment evolution models like the EVOLVE code are using detailed mission model data to input spacecraft, upper stages, and operational debris into specific orbits at specific times; debris from fragmentations are placed in orbits defined by the state vector of the fragmenting object(s) and the breakup model. The second type, typified by the CHAIN program, uses a particle-in-box model that bins the environment in size and altitude rather than following the orbit evolution of individual debris fragments. A 3-Step approach using both the EVOLVE and CHAIN model in a synergistic way was used to increase the reliability of long term environment projections. EVOLVE historical projections 1957–1995 could be validated by comparison to measurements. The comparison of 100 year projection runs of EVOLVE and CHAIN for different traffic scenarios showed a good agreement. In this paper, for the first time, CHAIN projections up to 10,000 years, based on validated boundary conditions derived by EVOLVE are presented, indicating clearly the need of early implementation of effective mitigation measures to prevent exponential population growth by collisional cascading effects.  相似文献   

11.
利用理论分析、数值仿真与相图分析,论述了月球卫星冻结轨道与地球卫星冻结轨道的区别,分析结果表明,月球重力场存在较大异常,会引起月球卫星轨道发生较大漂移。月球冻结轨道在田谐项影响下,还存在中等周期的漂移。仅简单考虑带谐项系数,无法求得完美的月球冻结系数。月球重力场异常对绕月卫星的影响与地球相比存在很大区别。月球轨道卫星的长期运行与控制策略的设计,不能按照地球轨道卫星的传统方法。目前使用的月球引力模型精度较差,尽管基于这些不可靠的引力模型,可以得出很多有用结论,但对未来高精度的月球探测任务来说,还存在不足,需要在将来的月球探测任务中,探测高精度的月球重力场,以利于未来月球探测航天系统的任务分析与设计。  相似文献   

12.
针对太阳系边际探测任务,开展了星际多目标飞越的任务规划,采用小推力混合优化设计方法完成了基于借力飞行及电推进技术的行星际转移轨道联合优化设计,对比研究了面向日球层鼻尖和尾部探测的星际多目标探测飞行方案.研究表明,探测器在2024-2025年发射,可飞抵日球层鼻尖区域,在2027-2030年发射可飞抵日球层尾部区域,并可...  相似文献   

13.
This paper addresses lunar escape maneuvers of the first Chinese Sun–Earth L2 libration point mission by the CHANG'E-2 satellite, which is also the world's first satellite to reach the L2 point from a lunar orbit. The lunar escape maneuvers are heavily constrained by the remaining propellant and the condition of telemetry, track and command, among others. First, these constraints are analyzed and summarized to design a target L2 Lissajous orbit and an initial transfer trajectory. Second, the maneuver mathematical models are studied. The multilevel maneuver schemes which consist of phasing maneuvers and a final lunar escape maneuver are designed for actual operations. Based on the scheme analysis and comparison, the 2-maneuver scheme with a 5.3-h-period phasing orbit is ultimately selected. Finally, the mission status based on the scheme is presented and the control operation results are discussed in detail. The methodology in this paper is especially beneficial and applicable to a future multi-mission instance in the deep space exploration.  相似文献   

14.
Queqiao relay communications satellite was developed to provide relay communications services for the lander and the rover on the far side of the moon. From entering into its halo mission orbit around the Earth-moon libration point 2 on June 14, 2018, it has operated on orbit more than fifteen months. It worked very well and provided reliable, continuous relay communications services for the lander and the rover to accomplish the goals of Chang'e 4 lunar far side soft landing and patrol exploration mission. The on-orbit operation status of Queqiao relay communications satellite is summarized in this paper.  相似文献   

15.
李强  洪涛  林乐天  高超  王巧 《宇航学报》2016,37(1):68-73
针对地球反照对太阳同步轨道卫星太阳电池阵输出电流的影响,首先比较不同降交点地方时卫星的太阳电池阵输出电流,分析其变化规律,然后选定晨昏轨道卫星作为研究对象,建立太阳电池阵输出电流模型与地球反照系数估计模型,利用最小二乘法估计电流参数与地球反照系数,最后结合不同季节、不同轨道高度卫星的遥测数据进行在轨验证。结果表明,对于轨道高度在1200km以下的晨昏轨道卫星,地球反照系数在0.05以上;地球反照系数随轨道高度增加呈指数规律衰减,衰减系数约为0.002。  相似文献   

16.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   

17.
In November 1986, more than 20 years ago, an H8 upper stage of Ariane 1 exploded in orbit nine months after the end of its mission. So as to avoid the generation of debris in low Earth orbit, a dedicated complementary development modified the design, introducing systematic passivation of the stage. Ever since this event, space debris mitigation has been a major concern for all launcher activities in Europe.After a short recall of the launchers currently operated by Arianespace as well as those currently developed by ESA with CNES, particularly for the safeguard authority, including the most promising future evolutions, the set of applicable regulations is described. These rules are fundamentally derived from the IADC Guidelines (hence the UNCOPUOS ones), translated into European Code of Conduct and in some more applicable Standards, such as the one prepared by ESA. The process of preparing ISO standards, mainly through the ECSS Working Group, is also described.Three major families can be identified: minimization of Mission Related Objects, Passivation of stages at the end of mission, and orbital protected zones including the so-called 25-year rule.The paper describes how European launchers do or will fulfill these applicable standards, quantifying the efficiency of the mitigation rules, and describing improvement actions currently under study.  相似文献   

18.
鄢建国  李斐  平劲松 《宇航学报》2011,32(4):767-774
对美国1998年发射的月球探测器LP任务阶段共19个月的双程测距测速轨道跟踪数据进行了精密定轨,对定轨结果通过轨道残差及重复弧段差异进行了精度评价。利用LP正常任务阶段三个月的轨道跟踪数据进行了月球重力场模型解算,通过重力场功率谱、轨道残差和月球自由空气重力异常对解算模型进行了精度评价。结果表明精密定轨及月球重力场模型解算合理。对进一步融合嫦娥一号轨道跟踪数据和LP数据解算自主的高精度月球重力场模型具有参考意义。
 
  相似文献   

19.
Rosetta was selected in November 1993 for the ESA Cornerstone 3 mission, to be launched in 2003, dedicated to the exploration of the small bodies of the solar system (asteroids and comets). Following this selection, the Rosetta mission and its spacecraft have been completely reviewed: this paper presents the studies performed the proposed mission and the resulting spacecraft design.

Three mission opportunities have been identified in 2003–2004, allowing rendezvous with a comet. From a single Ariane 5 launch, the transfer to the comet orbit will be supported by planetary gravity assists (two from Earth, one from Venus or Mars); during the transfer sequence, two asteroid fly-bys will occur, allowing first mission science phases. The comet rendezvous will occur 8–9 years after launch; Rosetta will orbit around the comet and the main science mission phase will take place up to the comet perihelion (1–2 years duration).

The spacecraft design is driven (i) by the communication scenario with the Earth and its equipment, (ii) by the autonomy requirements for the long cruise phases which are not supported by the ground stations, (iii) by the solar cells solar array for the electrical power supply and (iv) by the navigation scenario and sensors for cruise, target approach and rendezvous phases. These requirements will be developed and the satellite design will be presented.  相似文献   


20.
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号