共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(1):156-161
Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratios (e.g., B/C) produce too few antiprotons. In the present paper, we discuss one possibility to overcome these difficulties. Using the measured antiproton flux and B/C ratio to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local “unprocessed” component at low energies perhaps associated with the Local Bubble, thus decreasing the measured secondary to primary nuclei ratio. The independent evidence for SN activity in the solar vicinity in the last few Myr supports this idea. The model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni (Z ⩽ 28). Calculated isotopic distributions of Be and B are in perfect agreement with CR data. The abundances of three “radioactive clock” isotopes in CR, 10Be, 26Al, 36Cl, are all consistent and indicate a halo size zh ∼ 4 kpc based on the most accurate data taken by the ACE spacecraft. 相似文献
2.
S. Ota L. Sihver S. Kobayashi N. Hasebe 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Depth dependency of neutrons produced by cosmic rays (CRs) in the lunar subsurface was estimated using the three-dimensional Monte Carlo particle and heavy ion transport simulation code, PHITS, incorporating the latest high energy nuclear data, JENDL/HE-2007. The PHITS simulations of equilibrium neutron density profiles in the lunar subsurface were compared with the measurement by Apollo 17 Lunar Neutron Probe Experiment (LNPE). Our calculations reproduced the LNPE data except for the 350–400 mg/cm2 region under the improved condition using the CR spectra model based on the latest observations, well-tested nuclear interaction models with systematic cross section data, and JENDL/HE-2007. 相似文献
3.
P. Bobik G. Boella M.J. Boschini M. Gervasi D. Grandi K. Kudela S. Pensotti P.G. Rancoita 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
At 1 AU and outside the Earth’s magnetosphere, the relative abundances to protons for He (He/p), C (C/p) and Fe (Fe/p) nuclei were calculated using the observation data of AMS-01 (for p and He) and HEAO-3 (for C and Fe) above 0.8 GeV/nucleon. In addition, the transmission function (TF) for the GCR propagation inside the magnetosphere was evaluated using the IGRF and T96 (introduced by Tsyganenko and Stern) models to obtain permitted and forbidden trajectories inside the magnetosphere. The TF allowed one to derive the primary He-nuclei fluxes in the same geomagnetic regions of AMS-01 observations. These fluxes were found in good agreement with the observation data. Furthermore inside the magnetosphere in addition to the flux of helium, it allowed one to obtain those of the primary p, C, and Fe nuclei and the relative abundances of He, C and Fe nuclei to protons from the same observation data of AMS-01 and HEAO-3 above ≈0.8 GeV/nucleon. Up to a geomagnetic latitude of ≈45.84°, the relative isotopic abundances were found to depend on the mass number Iisot and, on average, range from a factor ≈2.31 up to ≈3.35 larger than those outside the magnetosphere at 1 AU. Thus, the magnetospheric isotopic/nuclear relative abundances differ from those inside the solar cavity and those in the interstellar space. The usage of the TF approach can allow one to determine the nuclear abundances in the magnetosphere at any geomagnetic latitude and, thus, any orbit, provided that the CR spectra are determined at 1 AU. 相似文献
4.
W Schimmerling J W Wilson J E Nealy S A Thibeault F A Cucinotta J L Shinn M Kim R Kiefer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(2):31-36
Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately connected with the shield transport properties and is a strong function of shield composition. The systematic behavior of the shield properties in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to conventional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H10T1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk. 相似文献
5.
R. E. Streitmatter S. J. Stochaj J. F. Ormes R. L. Golden S. A. Stephens T. Bowen A. Moats J. Lloyd-Evans 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):65-69
We report results from the Low Energy Antiproton Experiment (LEAP), a balloon-borne instrument which was flown in August, 1987. We find no evidence of antiproton fluxes in the kinetic energy range 120 MeV to 360 MeV, top of the atmosphere. The 90 percent confidence upper limit on the antiproton/proton ratio in this energy range is 3.5 × 10−5. In particular, this new experiment places an upper limit on the flux almost an order of magnitude below the reported flux of Buffington et al. 相似文献
6.
7.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(5):755-767
The flux of galactic cosmic rays (GCR) extends over a wide range of energies (from 108 to 1020 eV); it has a strong dependence on particle energy. Given the large span of energies the detection techniques, transport mechanisms and other characteristics vary as energy increases. In the low energy region (<1012 eV) the flux of GCR is modulated by the solar activity. Continuous registers are necessary to study intensity variations that must have their origin in the Sun. Detectors were designed and constructed for the purpose, they operate since the middle of the last century providing valuable information to study recurrent periodicities and their relationship to those of solar phenomena, but also to elucidate whose are the relevant transport mechanisms inside the heliosphere. A brief review of the advancement in the comprehension of these phenomena is presented. 相似文献
8.
9.
V. Florinski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
This paper discusses the transport of energetic charged particles through a sectored magnetic field in distant regions of the inner heliosheath. As the plasma flow slows down on approach to the stagnation point on the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of a cosmic ray particle. Under these conditions a particle can effectively drift across the stack of magnetic sectors with a speed comparable with the particle’s velocity. For a random distribution of current sheet separation distances, a diffusive transport across the stack of sectors occurs instead. The proposed mechanism could have contributed to unusually high intensities of galactic cosmic rays measured by Voyager 1 in the heliosheath during 2009–2010. 相似文献
10.
11.
I V Getselev P P Ignatiev N A Kabashova N N Kontor A R Moszhukhina G A Timofeev T G Khotilovskaya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):441-444
Based on the available measurement data, simulations of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's and Jupiter's radiation belts has been carried out. The > or = 10 MeV and > or = 30 MeV solar flare proton fluence forecast has been proposed for Cycle 22. Radiation conditions due to both magnetospheric electrons and protons and to solar flare protons, magnetic rigidity cutoff being taken into account, have been evaluated on spacecraft trajectories in the Earth's and Jupiter's magnetospheres. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(3):458-464
Solar energetic particles (SEPs) constitute a distinct population of energetic charged particles, which can be often observed in the near Earth space. SEP penetration into the Earth’s magnetosphere is a complicated process depending on particle magnetic rigidity and geomagnetic field structure. Particles in the several MeV energy range can only access to periphery of the magnetosphere and the polar cap regions, while the GeV particles can arrive at equatorial latitudes. Solar protons with energies higher than 100 MeV may be observed in the atmosphere above ∼30 km, and those with energies more than 1 GeV may be recorded even at the sea level. There are some observational evidences of SEP influence on atmospheric processes. Intruding into the atmosphere, SEPs affect middle atmosphere odd-nitrogen and ozone chemistry. Since spatial and temporal variations of SEP fluxes in the near Earth space are controlled by solar activity, SEPs may present an important link between solar activity and climate. The paper outlines dynamics of SEP fluxes in the near Earth space during the last decades. This can be useful for tracing relationship between SEPs and atmospheric processes. 相似文献
13.
M.S. Potgieter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues. 相似文献
14.
G.N. Kichigin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs). 相似文献
15.
J. B. Blake 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):125
Blake and Freisen painted out that if the anomalous cosmic rays are only singly charged they can penetrate deeply into the Earth's magnetosphere well below the cutoff for stripped ions. Ions which reach low altitude can be stripped by the residual atmosphere and become stably trapped. An experiment has been developed which will be able to detect the intensities of such stably trapped heavy ions as a function of magnetospheric position. In anticipation of the flight of this experiment, the fluxes and spectra of the trapped heavy ions have been calculated based upon the anomalous component observed in the IPM. 相似文献
16.
G A Bazilevskaya M B Krainev A K Stozhkov YuISvirzhevskaya N S Svirzhevsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):779-782
Balloon measurements of cosmic rays were made practically every day at several locations of the former USSR and in Antarctica over a period of more than 30 years. These measurements provide a means for assessment and control of ionizing radiation at the altitudes from ground level up to 30-35 km. 相似文献
17.
G D Badhwar A Konradi L A Braby W Atwell F A Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):67-72
We have flown two new charged particle detectors in five recent Shuttle flights. In this paper we report on the dose rate, equivalent dose rate, and radiation quality factor for trapped protons and cosmic radiation separately. A comparison of the integral linear energy transfer (LET) spectra with recent transport code calculations show significant disagreement. Using the calculated dose rate from the omni-directional AP8MAX model with IGRF reference magnetic field epoch 1970, and observed dose rate as a function of (averaged over all geographic latitude) and longitude, we have determined the westward drift of the South Atlantic anomaly. We have also studied the east-west effect, and observed a 'second' radiation belt. A comparison of the galactic cosmic radiation lineal energy transfer spectra with model calculations shows disagreement comparable to those of the trapped protons. 相似文献
18.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1928-1931
We discuss the main sources of uncertainties in the calculation of the positron and antiproton top of the atmosphere spectra using models including diffusion and convection or reacceleration. We show that, even including uncertainties, the models that include diffusion and convection are more consistent with existing measurements. The next generation experiments like PAMELA will help to reduce the uncertainties in the values of the main free parameters of the models, thus improving our knowledge of the origin and propagation of cosmic rays. 相似文献
19.
A.V. Grigoryev S.A. Starodubtsev V.G. Grigoryev I.G. Usoskin K. Mursula 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):955-961
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock. 相似文献
20.
H. Fuke Y. Tasaki K. Abe S. Haino Y. Makida S. Matsuda J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki S. Orito J.F. Ormes M. Sasaki E.S. Seo Y. Shikaze R.E. Streitmatter J. Suzuki K. Tanaka T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2050-2055