首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).  相似文献   

2.
Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratios (e.g., B/C) produce too few antiprotons. In the present paper, we discuss one possibility to overcome these difficulties. Using the measured antiproton flux and B/C ratio to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local “unprocessed” component at low energies perhaps associated with the Local Bubble, thus decreasing the measured secondary to primary nuclei ratio. The independent evidence for SN activity in the solar vicinity in the last few Myr supports this idea. The model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni (Z  28). Calculated isotopic distributions of Be and B are in perfect agreement with CR data. The abundances of three “radioactive clock” isotopes in CR, 10Be, 26Al, 36Cl, are all consistent and indicate a halo size zh  4 kpc based on the most accurate data taken by the ACE spacecraft.  相似文献   

3.
Access of low energy cosmic rays to any position on the Earth depends on the state of the magnetosphere. Anisotropy of cosmic rays, deduced from the neutron monitor network, must assume the variable transmissivity of the magnetosphere especially during the geomagnetic disturbances. We illustrate that computations based on different available models of geomagnetic field during selected strong geomagnetic disturbances in 2003 and 2004 imply different profiles of cut-off rigidities in time, different transmissivity functions and different asymptotic directions. Using of cosmic ray records by neutron monitors at middle and low latitudes during geomagnetically active periods, in addition to cosmic ray anisotropy in interplanetary space deduced from high and low energy cosmic ray ground based measurements, may be used for checking validity of geomagnetic field models.  相似文献   

4.
Depth dependency of neutrons produced by cosmic rays (CRs) in the lunar subsurface was estimated using the three-dimensional Monte Carlo particle and heavy ion transport simulation code, PHITS, incorporating the latest high energy nuclear data, JENDL/HE-2007. The PHITS simulations of equilibrium neutron density profiles in the lunar subsurface were compared with the measurement by Apollo 17 Lunar Neutron Probe Experiment (LNPE). Our calculations reproduced the LNPE data except for the 350–400 mg/cm2 region under the improved condition using the CR spectra model based on the latest observations, well-tested nuclear interaction models with systematic cross section data, and JENDL/HE-2007.  相似文献   

5.
At 1 AU and outside the Earth’s magnetosphere, the relative abundances to protons for He (He/p), C (C/p) and Fe (Fe/p) nuclei were calculated using the observation data of AMS-01 (for p and He) and HEAO-3 (for C and Fe) above 0.8 GeV/nucleon. In addition, the transmission function (TF) for the GCR propagation inside the magnetosphere was evaluated using the IGRF and T96 (introduced by Tsyganenko and Stern) models to obtain permitted and forbidden trajectories inside the magnetosphere. The TF allowed one to derive the primary He-nuclei fluxes in the same geomagnetic regions of AMS-01 observations. These fluxes were found in good agreement with the observation data. Furthermore inside the magnetosphere in addition to the flux of helium, it allowed one to obtain those of the primary p, C, and Fe nuclei and the relative abundances of He, C and Fe nuclei to protons from the same observation data of AMS-01 and HEAO-3 above ≈0.8 GeV/nucleon. Up to a geomagnetic latitude of ≈45.84°, the relative isotopic abundances were found to depend on the mass number Iisot and, on average, range from a factor ≈2.31 up to ≈3.35 larger than those outside the magnetosphere at 1 AU. Thus, the magnetospheric isotopic/nuclear relative abundances differ from those inside the solar cavity and those in the interstellar space. The usage of the TF approach can allow one to determine the nuclear abundances in the magnetosphere at any geomagnetic latitude and, thus, any orbit, provided that the CR spectra are determined at 1 AU.  相似文献   

6.
Be-7 radioactive nuclei with a half-life of 53.3 days result from spallation reactions of galactic cosmic rays(GCR) and solar energetic particles (SEP) with N and O nuclei in the Earth's atmosphere. We calculate the average global production of Be-7 in the atmosphere by GCR and SEP The result indicates that an intense SEP event produces a large amount of Be-7 in the polar stratosphere and part of them could be transported to the surface at lower latitudes. The ground-level measurement of Be-7 in Japan exhibits the possibility of enhancement in the Be-7 radioactivity associated with the intense SEP event on July 14, 2000. In addition, the present experiment shows seasonal variations in the surface Be-7 concentration which peaks in spring and autumn. We discuss the possible air mass mixing between the stratosphere and troposphere to explain the measured seasonal variations. The surface concentration of Pb-210 nuclei indicates a similar trend to that of Be-7 and we suggest two possible explanations.  相似文献   

7.
Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately connected with the shield transport properties and is a strong function of shield composition. The systematic behavior of the shield properties in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to conventional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H10T1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.  相似文献   

8.
We report results from the Low Energy Antiproton Experiment (LEAP), a balloon-borne instrument which was flown in August, 1987. We find no evidence of antiproton fluxes in the kinetic energy range 120 MeV to 360 MeV, top of the atmosphere. The 90 percent confidence upper limit on the antiproton/proton ratio in this energy range is 3.5 × 10−5. In particular, this new experiment places an upper limit on the flux almost an order of magnitude below the reported flux of Buffington et al.  相似文献   

9.
10.
The flux of galactic cosmic rays (GCR) extends over a wide range of energies (from 108 to 1020 eV); it has a strong dependence on particle energy. Given the large span of energies the detection techniques, transport mechanisms and other characteristics vary as energy increases. In the low energy region (<1012 eV) the flux of GCR is modulated by the solar activity. Continuous registers are necessary to study intensity variations that must have their origin in the Sun. Detectors were designed and constructed for the purpose, they operate since the middle of the last century providing valuable information to study recurrent periodicities and their relationship to those of solar phenomena, but also to elucidate whose are the relevant transport mechanisms inside the heliosphere. A brief review of the advancement in the comprehension of these phenomena is presented.  相似文献   

11.
The radial distribution of the high-energy (70 MeV-5 GeV) gamma-ray emissivity in the outer Milky Way is derived. The kinematics of HI are used to construct column-density maps in three galacto-centric distance ranges in the outer Galaxy. These maps are used in combination with COS-B gamma-ray data to determine gamma-ray emissivities in these distance ranges. A steep negative gradient of the emissivity for the 70 MeV-150 MeV energy range is found in the outer Galaxy. The emissivity for the 300 MeV-5 GeV range is found to be approximately constant (within 20%) and equal to the local value out to large (20 kpc) galacto-centric distances. These results imply a hardening of the gamma-ray spectrum with increrasing distance and for R > 16 kpc the spectrum is shown to be consistent with a π°-decay spectrum with the intensity expected from the local measurement of the cosmic-ray nuclei spectrum. The energy-dependent decrease is interpreted as a steep gradient in the cosmic-ray electron density and a near constancy of the nuclear component. The galactic origin of electrons with energies up to several hundreds of MeV is confirmed, while for cosmic-ray nuclei with energies of a few GeV either confinement in a large galactic halo or an extragalactic origin is suggested by the data.  相似文献   

12.
13.
14.
This paper discusses the transport of energetic charged particles through a sectored magnetic field in distant regions of the inner heliosheath. As the plasma flow slows down on approach to the stagnation point on the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of a cosmic ray particle. Under these conditions a particle can effectively drift across the stack of magnetic sectors with a speed comparable with the particle’s velocity. For a random distribution of current sheet separation distances, a diffusive transport across the stack of sectors occurs instead. The proposed mechanism could have contributed to unusually high intensities of galactic cosmic rays measured by Voyager 1 in the heliosheath during 2009–2010.  相似文献   

15.
The origin of cosmic rays with energy E ? 1018 eV is a long-standing problem in astrophysics. The development of ever larger detectors has brought in key experimental results in the past decade, most particularly the detection of a cut-off at the expected position for the long sought Greisen–Zatsepin–Kuzmin suppression as well as evidence for large scale anisotropies. This paper summarizes and discusses the recent achievements in this field.  相似文献   

16.
Based on the available measurement data, simulations of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's and Jupiter's radiation belts has been carried out. The > or = 10 MeV and > or = 30 MeV solar flare proton fluence forecast has been proposed for Cycle 22. Radiation conditions due to both magnetospheric electrons and protons and to solar flare protons, magnetic rigidity cutoff being taken into account, have been evaluated on spacecraft trajectories in the Earth's and Jupiter's magnetospheres.  相似文献   

17.
The ionization profiles produced by galactic cosmic rays in the Earth atmosphere and ionosphere are obtained on the basis of Monte Carlo simulations. Cascade processes in the atmosphere are simulated using CORSIKA 6.52 code with FLUKA 2006 and QGSJET II hadronic interaction subroutines. Proton induced showers are considered using a realistic atmospheric model (US Standard Atmosphere). The energy deposit from different components is taken into account, namely electromagnetic, hadron and muon components. The curvature of the atmosphere is considered in the computer code. On the basis of the computed ionization yield function the ion pair production rate in the atmosphere is obtained for different conditions and locations. The model is applicable to the entire atmosphere, from ground level to upper atmosphere. Several applications of the obtained results are discussed. The Monte Carlo simulation model considers nuclear interactions below the altitude of 35 km. It is compared with analytical–numerical electron production rate model. The latter model which takes into account the electromagnetic interactions above altitudes of 35 km has two main regions of application: above 50 km (thin target model) and between 35 and 50 km (intermediate target model). A good agreement between the CORSIKA results and analytical–numerical model results is found above altitude of 35 km.  相似文献   

18.
Solar energetic particles (SEPs) constitute a distinct population of energetic charged particles, which can be often observed in the near Earth space. SEP penetration into the Earth’s magnetosphere is a complicated process depending on particle magnetic rigidity and geomagnetic field structure. Particles in the several MeV energy range can only access to periphery of the magnetosphere and the polar cap regions, while the GeV particles can arrive at equatorial latitudes. Solar protons with energies higher than 100 MeV may be observed in the atmosphere above ∼30 km, and those with energies more than 1 GeV may be recorded even at the sea level. There are some observational evidences of SEP influence on atmospheric processes. Intruding into the atmosphere, SEPs affect middle atmosphere odd-nitrogen and ozone chemistry. Since spatial and temporal variations of SEP fluxes in the near Earth space are controlled by solar activity, SEPs may present an important link between solar activity and climate. The paper outlines dynamics of SEP fluxes in the near Earth space during the last decades. This can be useful for tracing relationship between SEPs and atmospheric processes.  相似文献   

19.
Dynamics of the galactic cosmic ray intensity caused by their interactions with a shock front in the September 9, 1992 event has been determined. Corresponding variations of the cosmic ray intensity have been calculated for different stations of the world network of neutron monitors and muon telescopes of stations Nagoya and Sakashita. Comparison calculated results with observational data shows, in general, satisfactory consensus both on amplitude and in time. The developed method can be used for investigation dynamics of the solar wind disturbances precursors in the cosmic rays.  相似文献   

20.
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号