首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Space light: space industrial enhancement of the solar option   总被引:1,自引:0,他引:1  
The solar option can be enhanced significantly by space light technology. Reflectors in suitable orbits beam to Earth measured amounts of sunlight, the most versatile and bio-compatible energy source. The multitude of space light functions ranges from night illumination of rural and urban areas (by Lunetta systems) to photosynthetic production enhancement for the growth of food and of biomass for conversion to chemical fuels, local agricultural irradiation for crop drying and weather stabilization and to electric power generation by irradiating suitable photovoltaic or thermal ground receivers at night or by adding to the natural solar energy input during daytime (Soletta systems).

The Lunetta and Soletta concepts, developed by the author during the past ten years, building on the foundations laid by the great space pioneer Prof. H. Oberth (1928), are reviewed, along with their socio-economic merits. An assessment of terrestrial alternatives shows that many useful functions have no practical alternative, the major exception being electric power generation. Three systems are selected, bracketing the broad versatility of space light—Lunetta, Powersoletta and a large Biosoletta for large-scale seafood production in Antarctic and Artic waters. The systems, and several maintenance and supply requirements are described, sized and analyzed, along with suitable orbit selection for different applications. Models are developed for rural and urban area lighting, power generation at selected sites around the globe with photovoltaic and thermal ground stations and for the large-scale production of seafood at high southern and northern latitudes with ample nutrient upwell, but insufficient annual supply of solar energy. The economics of these systems is analyzed.  相似文献   


2.
3.
Joseph N. Pelton   《Space Policy》2005,21(3):221-225
The 2003 Columbia accident demonstrated that spaceflight remains a risky and dangerous human endeavor, yet there have been few ‘unofficial’ investigations into astronaut safety. This report summarizes the findings of one such study by George Washington University's Space & Advanced Communications Research Institute—e.g. that simplicity of design may be better than complexity, that cargo missions would be better carried out robotically and that all new space transportation systems should be developed to common international standards—before examining ways that international cooperation can advance the cause of space safety. In establishing future space safety standards input from a wider range of participants (industry, universities and private research institutes, as well as space agencies, etc.) will need to be sought.  相似文献   

4.
Space Biospheres Ventures is developing technologies for its Biosphere 2 project — a 3 acre materially closed ecological system with human habitat, intensive agriculture and five wilderness biomes — and other life-support testbeds for space habitats in microgravity and the Moon and Mars, as well as for ecological research pertinent to the biosphere of Earth. These include soil bed reactors for air purification and biomass production; aquatic waste processing systems; real-time analytic systems; and computer systems of control and management. A space policy pursuing joint Earth and ‘space biospheres’ objectives and implications is discussed.  相似文献   

5.
The following is the executive summary of Volume 1 of Euroconsult's four volume study, Space Industries and Markets in Russia and Other Countries of the Former Soviet Union. The material reproduced covers space policy and industry in CIS countries, providing a transversal view of CIS space activities and organizations. Generic problems across all fields of applications are analysed; the final focus is on trade with foreign countries. The other volumes cover prospects for satellite communications in the CIS to 2000; prospects for Earth observation satellite systems in Russia and Ukraine to 2000; and prospects for space transportation systems in the CIS to 2000. Information on the whole — some 650 pages — may be obtained from Pauline Byrne at Euroconsult, 71 Boulevard Richard Lenoir, 75011 Paris, France.  相似文献   

6.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

7.
Scientists have expended much energy researching SPS but their theories have never yet been realistically tested. It is time for this to change and SPS 2000 — a Japanese-sponsored project to construct and operate a pilot plant to supply electricity to residents of equatorial zones — could provide the means. The project and its benefits are described and the political—economic imperatives for undertaking it presented. The author argues that there are cogent — and practical — reasons for funding a pilot plant, especially given the vast sums spent on other space activities, and on nuclear power, although the latter has never lived up to expectations.  相似文献   

8.
This viewpoint looks at the positive and negative prospects for the establishment of Space Solar Power Stations (SSPSs) from the standpoint of the way in which space technology has evolved since the concept was first proposed. While there are pressing arguments for alternatives to today’s energy sources, and technological advances have made construction and maintenance of SSPSs potentially easier and less expensive, it is argued that the general trend towards miniaturization in space, plus the probable difficulty of obtaining frequency allocations for SSPSs, militate against their realization. Further, the increasing militarization of space provides additional competition and could mean that SSPSs will never be launched for fear of becoming an enemy target. Nevertheless, SSPSs could have a future supplying electricity within the space environment itself.  相似文献   

9.
文键  李超龙  王悠悠  赵欣  王斯民  厉彦忠 《宇航学报》2021,42(10):1335-1342
针对传统气动弹射介质空气做功能力不足的问题,提出采用CO_2作为新型气动弹射介质。基于质量守恒和能量守恒定律建立了以CO_2为弹射介质的弹射热力模型,并使用该模型对比分析了CO_2和空气作为弹射介质对于弹射性能的影响。得到了弹射过程中高低压室内介质状态以及飞行器运动参数的动态变化过程。与空气相比,CO_2具有更大的做功能力。相同的热力状态下弹射相同质量的飞行器,使用CO_2可获得更大的出筒速度。CO_2作为弹射工质对于大质量的飞行器优势明显,在不减小出筒速度的情况下,使用CO_2可使负载质量提升50%以上,验证了CO_2作为弹射工质的可行性。  相似文献   

10.
The use of wireless power transmission in Space Solar Power (SSP) activities creates significant policy issues regarding the beam right-of-way. There will not be a single beam, there may well be hundreds of beams for economical systems. Are some or all of these power beams to be afforded priorities of space for unobstructed power delivery, or must the beaming systems be designed to be capable of detecting any and all potential beam interceptions and appropriately responding? The repeated interruptions for guaranteed safety of transit for freely moving air and space traffic are of great consequence. The safety issues are critical, but the implications for equipment transient protection, energy storage system costs and the quality of power delivery service are also significant for wireless power transmission economics. A scenario of precursor wireless power transmission developments leading up to and including SSP applications will be used to frame and to discuss the beamed power technology implications and policy issues.  相似文献   

11.
The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.  相似文献   

12.
The scientific community has long embraced the concept of globalized collaboration, recognizing that scientific inquiry knows no borders and that scientific theory transcends nationality. With respect to translating scientific and technological innovation into practical application, however, national, political, and ideological barriers suddenly arise. At a time when the worlds of economics and finance are rapidly globalizing, the world of applied science lags behind — despite increasingly urgent need for global energy solutions. In the context of considering space solar power (SSP) systems, the author contends that these solutions require new ways of determining costs and benefits; that scientific experts should seek active engagement in the policy arena; and that SSP's scientific community has a critical role to play in advocating for consideration of space-based energy solutions.  相似文献   

13.
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the “Closed Equilibrated Biological Aquatic System” (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to “near weightlessness conditions” (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i . e. that the plants exhibited biomass production rates identical to the ground controls and that as well the reproductive, and the immune system as the the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle fligt (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiments and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the short-term space experiments with the C.E.B.A.S. MIMI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated “reproduction module” for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

14.
This article reports about the results of the latest computer runs of a lunar base simulation model. The lunar base consists of 20 facilities for lunar mining, processing and fabrication. The infrastructure includes solar and nuclear power plants, a central workshop, habitat and farm. Lunar products can be used for construction of solar power systems (SPS) or other spacecraft at several space locations. The simulation model evaluates the mass, energy and manpower flows between the elements of the system as well as system cost and cost of products on an annual basis for a given operational period. The 1983 standard model run over a fifty-years life cycle (beginning about the year 2000) was accomplished for a mean annual production volume of 78 180 Mg of hardware products for export resulting in average specific manufacturing cost of 8.4 $/kg and total annual cost of 1.25 billion dollars during the life cycle. The reference space transportation system uses LOX/LH2 propulsion for which at the average 210 500 Mg LOX per year is produced on the moon. The sensitivity analysis indicates the importance of bootstrapping as well as the influence of market size, space transportation cost and specific resources demand on the mean lunar manufacturing cost. The option using lunar resources turns out to be quite attractive from the economical viewpoint. Systems analysis by this lunar base model and further trade-offs will be a useful tool to confirm this.  相似文献   

15.
The use of oxygen produced on the Moon—called “MOONLOX”—is considered as a propellant component for a reusable Earth-Moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed and the processing concept of a lunar oxygen plant based on fluorination is presented. It is shown that the necessary mass of supply from Earth for MOONLOX-production is an important parameter, which may not be neglected due to its strong influence on the economy. In the ideal case where no supplies from Earth are required a reduction of up to 50% in masses to be launched into low Earth orbit can be obtained for a typical lunar mission with use of MOONLOX compared to a reference scenario with Earth-derived propellant. Mass-saving decreases, however, significantly with increasing supply from Earth until a critical supply-rate is reached—measured in percentage of MOONLOX-mass produced and consumed—beyond which mass-saving and thus economically promising lunar oxygen production is no longer possible. This critical supply-rate depends on the scenario for MOONLOX-utilization and is much larger in the case of in situ use of MOONLOX on the lunar surface, e.g. as ascent propellant for the lunar bus, than in the case of export for complete refuelling of both space vehicles. The latter scenario therefore requires significantly more autonomy for MOONLOX-production. The reduction of masses to be transported into low Earth orbit and corresponding MOONLOX-consumption define for given specific Earth-to-LEO transportation costs an upper limit on MOONLOX-production costs beyond which economic benefit is not possible. Depending on the MOONLOX-utilization strategy this upper limit varies between 3000 and 55000 $/kg for current Earth-to-LEO transportation costs.  相似文献   

16.
Through a techno-nationalist lens, this paper will assess the growing China–European Union (EU) space partnership, and its implications for international space cooperation and competition. Techno-nationalism (jishu minzuzhuyi), the idea that technological strength is an effective determinant of national power in a harshly competitive world,3 informs both Chinese and US perceptions of China's space development. Using this lens elevates all space activities—manned, unmanned, military and scientific—to the strategic level. It is our contention that because of the increasing China–EU space partnership, the USA must re-evaluate its approach to China—away from the containment approach, which has thus far predominated, toward an approach which would offer the USA the opportunity to influence and, thereby, decrease the importance of the emerging partnership.  相似文献   

17.
At a time when scientific and commercial interest in the Moon is being reinvigorated it is becoming fashionable for ordinary individuals to ‘buy’ plots on the lunar surface, with the ‘vendors’ arguing that an absence of specific prohibition of individual private activity in space makes such action legal. It is therefore time for the legal community to address this situation by investigating just how legal such activity is—and bringing their findings to the attention of governments. This can be done through an examination of the relationship between national law and international space law, of the provisions of international space law—especially Article 2 of the Outer Space Treaty—and by answering any claims to private ownership of immovable property. Aside from the fact that individuals appear to be being duped, the pursuit of property claims on the Moon could impede future activities aimed at benefiting society.  相似文献   

18.
Considerable progress has been made in recent years on development of candidate physico-chemical components for use in regenerative life support systems (LSS) for future extended-duration-mission spacecraft; these life support systems provide air revitalization including carbon dioxide reduction, water reclamation, and limited waste management. For still longer duration manned space flights, such as a permanently inhabited space station, it is generally recognized that development of biological life support systems capable of generating food and regenerating wastes will be essential to reduce logistics costs.  相似文献   

19.
Because the need for energy is global, and many energy networks are already interdependent, because no one country has sufficient technological capability or sufficient funds to provide a space solar powered solution on its own, and because any such solution will require international regulation, international coordination will be vital to any attempt to produce energy for Earth from space. This will be made easier by the fact that work on the subject has already been widely publicized and distributed and cooperative efforts have already been made. Various coordinating approaches are described and the need to forge partnerships between government, industry and academia — with greater involvement of all non-space groups concerned with energy — is emphasized. A “terracing approach” to the actual implementation of SPS is suggested and outlined.  相似文献   

20.
We present new experimental results on the formation of oxidants, such as hydrogen peroxide, ozone, and carbonic acid, under ion irradiation of icy mixtures of water/carbon dioxide at different ratios and temperatures (16 and 80 K). Pure water ice layers and mixtures with carbon dioxide were irradiated by 200 keV He+ ions. We found that the CO(2)/H(2)O ratio progressively decreased to a value of about 0.1, the H(2)O(2) production increased with increasing CO(2) abundance at both 16 and 80 K, and the CO and H(2)CO(3) production increased with increasing CO(2) abundance at 16 K. At 80 K, the synthesis of CO was less efficient because of the high volatility of the molecule that partially sublimed from the target. The production of carbonic acid was connected with the production of CO(3). O(3) was detected only after ion irradiation of CO(2)-rich mixtures. The experimental results are discussed with regard to the relevance they may have in the production of an energy source for a europan or a martian biosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号