首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neutral Particle Detector (NPD) of the ASPERA-3 experiment (Analyser of Space Plasmas and Energetic Atoms) on board the Mars Express (MEX) spacecraft observed an intense flux of H ENAs (energetic neutral atoms) with average energy of about 1.5 keV emitted anisotropically from the subsolar region of Mars. The NPD detected the ENA jet near the bow shock at radial distances of about 1 R M from the Martian surface as the spacecraft moved outbound, while the NPD continuously pointed towards the subsolar region. The jet intensity shows oscillative behavior. These intensity variations occur on two clearly distinguishable time scales. The majority of the identified events have an average oscillation period of about 50 sec. The second group consists of events with long-scale variations with a time scale of approximately 300 sec. The fast oscillations of the first group exhibit a periodic structure and are detected in every orbit, while the slow variations of the second group are identified in ∼40% of orbits. The intensity of the fast oscillations have a peak-to-valley ratio about 20 to 30% of the peak intensity. One of the possible mechanisms to explain fast oscillations is the formation of the low frequency ion waves at the subsolar region of Mars. Slow variations may be explained by either temporal variations in the ENA generation source or by a specific structure of the ENA generation source, in which hair-like ENA subjets can be present.  相似文献   

2.
The study of cosmic-ray intensity variations have been carried out with data registered by ground-based and balloon-borne equipment for the past 50 years or more. The International Geophysical Year (IGY) from July 1957 to December 1958 gave an impetus to global collaborations. A world-wide network of concerted measurements became available with the advent of the space age.In situ measurements by satellite-borne detectors led to deep-space exploration. The spacecraft Pioneers and Voyagers, during the past 15 years, traversing farther out into the heliosphere at increasing radial distances from the sun have changed the study of time variations into one of time and spatial variations.Furthermore, with the Voyager 1, proceeding asymptotically towards heliolatitudes of 35° north since its encounter with Saturn and the anticipated direction of Voyager 2 after its encounter with Neptune in late-1989 towards 48° south heliolatitude, is converting the study into a truly three-dimensional exploration of the heliosphere. Thus, the investigation of galactic cosmic-ray intensity variations fromin situ measurements deep in the heliosphere in distance, latitude, and over solar cycles is indeed a remarkable achievement.The various cosmic-ray intensity variations over different time-scales, the modulation of the intensity by the evolving solar activity and the role of the electromagnetic state of the interplanetary medium (otherwise called heliosphere) can now be investigated as never before; these studies contribute immensely to our knowledge of the solar neighbourhood. This article essentially deals with the studies of time and spatial variations of cosmic-ray intensity that have been conducted especially over the past two decades.  相似文献   

3.
We present preliminary results from V-band CCD photometric observations of several low-mass X-ray binaries with faint optical counterparts obtained at ESO and CFHT from February to September 1984. LMCX-2 exhibits large (0.3–0.5 magnitude) variations consistent with a possible 6.4 hour period. 1556-605 shows 0.2–0.5 magnitude variations suggesting that the orbital period is longer than 7 hours. 1957+115 shows short time scale (1 hour) variations of 0.1 magnitude.Based on observations obtained at the European Southern Observatory, La Silla, Chile and with the Canada-France-Hawaii telescope, Mauna Kea, HI.  相似文献   

4.
在确定的函数关系(数学模型)中,因变量(输出量)随自变量(输入量)的变化规律完全由数学逻辑所确定,自变量到因变量的传递系数(灵敏系数)也可由因变量的标准差和自变量的标准差之比所决定,而与自变量的来历(测量的或者给定的)没有关系[1].本文根据这一基本原理,采用模拟自变量随机变化的方法,成功计算了手持式激光测距仪的测距固定偏差和比例偏差系数的测量不确定度,从而计算出测距标准差综合评定的扩展不确定度,同时解决了复杂的数学模型中多个输入量到输出量的灵敏系数和输出量的不确定度的计算问题.  相似文献   

5.
The concepts of near-pole magnetic field variations during magnetically quiet periods are explored, with special emphasis on the relationships of these variations to interplanetary magnetic field components. Methods are proposed for relating the variations which have been observed to the fields from the various sources, based on a thorough selection of reference levels. We assume that the field variations in the summer polar cap during magnetically quiet periods consist of the following components: (i) the middle-latitude S qvariation extended to the polar region; (ii) the DPC(B y) single-cell current system with a polar electrojet in day-side cusp latitudes; (iii) the DMC(B z) two-cell current system of magnetospheric convection, in the form of a homogeneous current sheet in the polar cap towards the sun, with return currents through lower latitudes; (iv) the DPC(B z) single-cell counterclockwise current system with a focus in the day-side cusp region. Quantitative relations between the near-pole variation intensities and the value and sign of the IMF azimuthal component, with a 1 hr time resolution, have been obtained and used to suggest ways of diagnosing the interplanetary magnetic field on the basis of ground observations.  相似文献   

6.
经济增长的构成可分为三部分:(1)由生产率变化而引起的经济增长;(2)由投入量变化而引起的经济经济;(3)由生产率变化和投入量变化交互作用而引起的经济增长。经济增长方式的转变,其粗放和集约程度可由集约指数和粗放指数表征,其转变的临界点可以求解,并由此进行量化判别,经济增长方式转变的核心问题是促进集约(进化),防止粗放(退化),保持适度的经济增长,千方百计提高生产率;归根结底,主要源于技术创新。  相似文献   

7.
王小京  邹正平 《推进技术》2022,43(3):104-111
加工等过程中产生的几何偏差会导致涡轮叶片气动性能及工作状态发生显著变化,对该影响的准确评估与合理分析具有重要意义.本文提出了一种考虑三维型面几何偏差对气动性能影响的不确定性计算分析方法,包括随机叶型几何建模、不确定性量化计算和敏感性分析等,并结合某一单级高压涡轮进行分析.基于随机过程理论和主成分分析法,参考现有叶片加工...  相似文献   

8.
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   

9.
Nerem  R.S.  Wahr  J.M.  Leuliette  E.W. 《Space Science Reviews》2003,108(1-2):331-344
The Gravity Recovery and Climate Experiment (GRACE), which was successfully launched March 17, 2002, has the potential to create a new paradigm in satellite oceanography with an impact perhaps as large as was observed with the arrival of precision satellite altimetry via TOPEX/Poseidon (T/P) in 1992. The simulations presented here suggest that GRACE will be able to monitor non-secular changes in ocean mass on a global basis with a spatial resolution of ≈500 km and an accuracy of ≈3 mm water equivalent. It should be possible to recover global mean ocean mass variations to an accuracy of ≈1 mm, possibly much better if the atmospheric pressure modeling errors can be reduced. We have not considered the possibly significant errors that may arise due to temporal aliasing and secular gravity variations. Secular signals from glacial isostatic adjustment and the melting of polar ice mass are expected to be quite large, and will complicate the recovery of secular ocean mass variations. Nevertheless, GRACE will provide unprecedented insight into the mass components of sea level change, especially when combined with coincident satellite altimeter measurements. Progress on these issues would provide new insight into the response of sea level to climate change. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Thermospheric Density: An Overview of Temporal and Spatial Variations   总被引:3,自引:0,他引:3  
Neutral density shows complicated temporal and spatial variations driven by external forcing of the thermosphere/ionosphere system, internal dynamics, and thermosphere and ionosphere coupling. Temporal variations include abrupt changes with a time scale of minutes to hours, diurnal variation, multi-day variation, solar-rotational variation, annual/semiannual variation, solar-cycle variation, and long-term trends with a time scale of decades. Spatial variations include latitudinal and longitudinal variations, as well as variation with altitude. Atmospheric drag on satellites varies strongly as a function of thermospheric mass density. Errors in estimating density cause orbit prediction error, and impact satellite operations including accurate catalog maintenance, collision avoidance for manned and unmanned space flight, and re-entry prediction. In this paper, we summarize and discuss these density variations, their magnitudes, and their forcing mechanisms, using neutral density data sets and modeling results. The neutral density data sets include neutral density observed by the accelerometers onboard the Challenging Mini-satellite Payload (CHAMP), neutral density at satellite perigees, and global-mean neutral density derived from thousands of orbiting objects. Modeling results are from the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM), and from the NRLMSISE-00 empirical model.  相似文献   

11.
The variations of the gravitational field have been determined from satellite orbit perturbations with fair reliability up to at least spherical harmonic degree 8.The largest departure from hydrostatic equilibrium by a factor of 2 is the oblateness, which, together with the observed rate of deceleration of the earth's rotation, leads to an estimate of about 1026 poises for the viscosity of the lower mantle.The remaining variations in the field are too large to be associated solely with the crust; their origin must be mainly in the mantle. The positive correlation with topography for degrees l 6 and the rate of decrease of the variations (proportionate to l -2 in potential coefficients, or to l -1 in gravity anomaly power spectrum) are such that their source must in part be in the upper mantle, less than 400 km deep. However, the lack of obvious correlation with other indicators of upper-mantle activity such as sea-floor spreading and heat flow suggests that the density variations are the consequence of relatively small imbalances between dynamic disturbing effects and compensating restorative effects. At least part of the variations, particularly for degrees l 5, probably have their source in the stiff lower mantle.Publication No. 634, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif., U.S.A., 90024.  相似文献   

12.
Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines; thus, it is necessary to determine their actual characteristics and accurately estimate their impact on performance. In this study, based on 1781 measured profiles of a typical turbine blade, the statistical characteristics of the geometric variations and the uncertainty impact are analyzed, and some commonly used uncertainty modelling methods based on PrincipalComponent Analysis(PCA)...  相似文献   

13.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   

14.
Tamtsiea  M. E.  Mitrovica  J. X.  Davis  J. L.  Milne  G. A. 《Space Science Reviews》2003,108(1-2):81-93
Rapid ice mass variations within the large polar ice sheets lead to distinct and highly non-uniform sea-level changes that have come to be known as ‘sea-level fingerprints’. We explore in detail the physics of these fingerprints by decomposing the total sea-level change into contributions from radial perturbations in the two bounding surfaces: the geoid (or sea surface) and the solid surface. In the case of a melting event, the sea-level fingerprint is characterized by a sea-level fall in the near-field of the ice complex and a gradually increasing sea-level rise (from 0.0 to 1.3 times the eustatic value) as one considers sites at progressively greater distances (up to ≈ 90° or so) from the ice sheet. The far-field redistribution is largely driven by the relaxation of the sea-surface as the gravitational pull of the ablating ice sheet weakens. The near-field sea-level fall is a consequence of both this relaxation and ocean-plus-ice unloading of the solid surface. We argue that the fingerprints provide a natural explanation for geographic variations in sea-level (e.g., tide gauge, satellite) observations. Therefore, they furnish a methodology for extending traditional analyses of these observations to estimate not only the globally averaged sea-level rate but also the individual contributions to this rate (i.e., the sources). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered.  相似文献   

16.
The atmospheric dynamo theory of the daily magnetic variations (S) has received substantial support from recent observational and theoretical work. In particular, several features of the variations, such as their remarkable enhancement close to the dip equator and other effects indicating a strong control by the main geomagnetic field, are well explained by the dynamo theory. Also the detection of ionospheric currents by instrumental rockets has confirmed an essential part of the theory.Considerable impetus was given to their study by the acquirement of much new data on magnetic variations during the IGY-IQSY period. Additional observations in the Pacific area were obtained during the IQSY by the establishment of four island stations equipped with newly developed magnetometers. A major advance at other stations was the development of automatic standard observatories using nuclear magnetometers.Several methods for the world-wide analysis of the S-field have been developed. A possibility now being studied is the completely automatic evaluation and construction by computers of ionospheric current charts for any day and any epoch UT.Some theoretical and statistical papers are briefly reviewed. These include discussions of the day-to-day variability of S, seasonal changes of the S-field, the nature of the equatorial electrojet, the possibility of solar wind effects contributing to the daily variations, and the modification of the dynamo theory to take account of the possible flow of electric current from the ionosphere along magnetic lines of force in the magnetosphere.Finally, an attempt to extend the dynamo theory of S by treating the ionosphere as a three-dimensional medium, instead of regarding it as a thin shell, has revealed that, although the relations between the horizontal components of electric field and current density in the dynamo layer are given with reasonable accuracy by the well-known layer equations, the assumption, implicit in the thin shell treatment, that the horizontal currents are non-divergent is not in fact true. Hence a revision of some earlier theoretical work on S appears necessary.  相似文献   

17.
航天用硅橡胶制品贮存试验技术研究进展   总被引:2,自引:2,他引:2       下载免费PDF全文
主要对航天用硅橡胶制品的贮存试验研究进展情况进行了梳理总结,在此基础上指出目前存在以下三方面不足:自然贮存试验开展得少而且数据没有充分挖掘、利用;单应力加速老化试验开展得多,综合应力加速试验开展得少;贮存试验中对产品宏观性能变化关注得多,对其微观结构变化和老化机理研究得少.针对这些问题,指出了今后应在自然贮存试验信息的积累和应用、综合应力贮存试验和贮存老化机理等方面加强研究.  相似文献   

18.
19.
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2003,107(1-2):317-325
An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (<3.2 km). GCR are responsible for nearly all ionisation in the atmosphere below 35 km. One mechanism could involve ion-induced formation of aerosol particles (diameter range, 0.001–1.0 μm) that can act as cloud condensation nuclei (CCN). A systematic variation in the properties of CCN will affect the cloud droplet distribution and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The solar system is apparently stratified with regard to the contents of volatile constituents, as judged from the rocky, volatile-poor inner solar system planets and meteorites and the huge volatile-rich outer planets. However, beyond this gross structure there is no evidence for a systematic increase of the volatiles' abundances with distance from the Sun. Although meteorites show comparatively large differences in volatile element contents they also differ in many other respects, such as Mg/Si-ratios, bulk Fe and refractory element contents. These variations reflect variations in the nebular environment from which meteorites formed. The various conditions of meteorite formation cannot, however, be related in a simple way to heliocentric distances. There are also no systematic variations in the chemistry of the inner planets Mercury, Venus, Earth, Moon, Mars, and including the fourth largest asteroid Vesta, that could be interpreted as a relationship between volatility and composition. Although Mars (as judged from the composition of Martian meteorites) is more oxidized and contains more volatile elements than Earth, this trend cannot be extrapolated to the dry volatile poor Vesta (sampled by HED meteorites) in the asteroid belt. If the Earth-Mars trend reflects global inner solar system gradients then Vesta must have formed inside Earth's orbit and moved out later to its present location. The quality of Mercury and Venus composition data is not sufficient to allow reliable extrapolation to distances closer to the Sun. Recent nebula models predict small temperature gradients in the inner solar system supporting the view that no large variations in volatile element contents of inner solar system materials are expected. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号