共查询到20条相似文献,搜索用时 0 毫秒
1.
Audouin Dollfus 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(8):47-58
Polarization measurements over the surfaces of the Moon, Mercury, Mars and Saturn's rings, and global data for the Galilean satellites, have been recorded with telescopes in France. A number of asteroids were measured by B. Zellner in USA. The curves of polarization are diagnostic of the micro-texture of the surface, and demonstrate that all the atmosphereless Solar System objects so far observed (except Callisto trailing hemisphere) have their surfaces covered with a regolith of fines, as for the Moon, which is produced by the cumulative effect of meteoroid impacts. For all the silicaceous objects down to a diameter of 700 km, namely Mars, Mercury, the Moon, Callisto (for the apex hemisphere), the mean grain sizes are no larger than 20um. The asteroids have coarser grained regoliths, apparently because of their smaller gravitational escape velocities. The C type asteroid surfaces, assumed to be carbon rich, appear finer grained than the silicaceous S types. The M astereroids assumed to be metallic, are also covered with small fragments, becuase metals loose their ductile properties at low temperature and behave at impact like brittle silicates. The trailing hemisphere of Callisto has a texture almost reminiscent of bare rocks. Orbital considerations to excluse significant impact effects, and a scenario for the past evolution of the satellite are implied.The planet Mars, with wind effects due to a tenuous atmosphere, several intense past volcanic episodes, a high tectonic activity and a permafrost underground has a more diversified surface regolith. A detailed analysis was achieved with photopolarimeters placed on board the soviet Mars Orbiter Spacecraft MARS-5.The Saturn's rings, anisotropic multiple scattering effects are observed and exhibit variations often in few days or weeks. Mutual interactions and gravitational forces are at work to produce organized structures, whereas disorganization forces occur and the competition produced ephemeral situations. 相似文献
2.
Yoav Yair 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We present the latest observations from spacecraft and ground-based instruments in search for lightning activity in the atmospheres of planets in the solar system, and put them in context of previous research. Since the comprehensive book on planetary atmospheric electricity compiled by Leblanc et al. (2008), advances in remote sensing technology and telescopic optics enable detection of additional and new electromagnetic and optical emissions, respectively. Orbiting spacecraft such as Mars Express, Venus Express and Cassini yield new results, and we highlight the giant storm on Saturn of 2010/2011 that was probably the single most powerful thunderstorm ever observed in the solar system. We also describe theoretical models, laboratory spark experiments simulating conditions in planetary mixtures and map open issues. 相似文献
3.
G.E. Morfill 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(3):87-94
The role of electromagnetic effects in planetary rings is reviewed. The rings consist of a collection of solid particles with a size spectrum ranging from submicron to 10's of meters (at least in the case of Saturn's rings). Due to the interaction with the ambient plasma, and solar UV radiation, the particles carry electrical charges. Interactions of particles with the planetary electromagnetic field, both singly and collectively, are described, as well as the reactions and influence on plasma transients. The latter leads to a theory for the formation of Saturn's spokes, which is briefly reviewed. 相似文献
4.
D.A. Mendis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):111-120
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces. 相似文献
5.
C F Chyba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):45-48
Comets in our solar system appear to have provided a bridge between the cold, volatile-rich outer solar system, and the warm, but volatile-poor inner solar system. Excluding tidal and possible extinct radionuclide heating sources, only in the inner solar system are temperatures high enough for liquid water, and therefore life as we know it, to exist for times comparable to the age of the solar system. Comets may have been crucial for providing biogenic volatiles and perhaps organic molecules to this warm environment. It is therefore interesting from an exobiological point of view to ask if comets exist in other planetary systems. Most attempts to detect comets around other stars or in interstellar space have failed. However, there is growing spectroscopic evidence for comet-like bodies orbiting the star Beta Pictoris. 相似文献
6.
C de Bergh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):427-440
Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions. 相似文献
7.
Jacques Arnould André Debus 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
What hazards might biological contamination pose to planets, comets and other celestial bodies visited by probes launched from Earth? What hazards might returning probes pose to Earth and its inhabitants? What should be considered an acceptable level of risk? What technologies, procedures and constraints should be applied? What sort of attitude has to be chosen concerning human crews, who themselves could become both contaminated victims and contaminating agents? The vast issue of planetary protection must, more than ever, spark ethical debate. Space treaty, COSPAR recommendations offer borders and context for this reflection, which has to be introduced in the actual humanist: never has been anthropocentrism so practical and concerned, in the same time, by the next generations, because of the historical character of life. At least an ethics of risk is necessary (far from the myth of zero-risk) for all the three types of contamination: other celestial bodies (forward contamination), Earth (backward contamination) and astronauts. 相似文献
8.
F Raulin P Bruston 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(12):41-49
UV induced syntheses of organic compounds from the main atmospheric constituents can be a very important source of organics in a given planetary environment provided the atmosphere is in a reduced state. The evolution of a CO2 rich medium only produces very low yields of formaldehyde and related oxygenated compounds. Considering a CO rich atmosphere, the photochemical yield of O-organics formation is much higher, when the synthesis of N-organics remains difficult. The most favourable atmosphere as far as photochemical organic synthesis is concerned is a CH4 rich milieu.. The photochemical evolution of such a CH4 atmosphere under UV irradiation leads to a chain of various organics, the complexity of which increases together with the number of pathways involved in their formation. Their complexity also closely correlates with their UV photoabsorption spectrum: the more complex they are, the more shifted is their UV spectrum toward the visible range. Direct photodissociation of methane requires UV photon of wavelengths shorter than about 145 nm. It mainly produces ethane which absorbs UV at wavelengths shorter than about 160 nm, and acetylene, that presents an absorption spectrum extending up to 200 nm. This shift still continuously increases with further increase in number of C atoms. Unsaturated hydrocarbons with 4 and more C atoms have UV absorption characteristics including noticeable band structures in the 250–300 nm range. This trend has very important implication in the photochemical behaviour of a CH4-rich planetary atmosphere, as it induces many catalytic processes. The occurrence of such processes is closely related to vertical atmospheric and energy deposition profiles. Titan provides a very good example of such a UV-directed organic atmospheric chemistry. 相似文献
9.
W.D. Cochran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):143-153
The observable effects of Raman scattering on the spectra of the giant planets may provide new information on the composition and structure of these atmospheres. Satellite observations have already shown the influence of Raman scattering on the UV continuum albedo. A cross correlation technique is presented for detecting rotational and vibrational transitions of the Raman active gases in the atmosphere. This technique has been applied to ground-based visible spectra of Venus, Jupiter, Saturn and Uranus. Extension of this method into the UV would improve the detectability of the Raman lines because the ratio of Raman to Rayleigh cross section increases with decreasing wavelength. The technology currently exists to efficiently obtain high signal-to-noise ratio UV spectra through the use of silicon diode array detectors. Application of the cross-correlation technique to UV spectra obtained from space vehicles would give us a new important probe of the structure and composition of planetary atmospheres by enabling us to use the UV spectra of a planet to observe that would normally be an infrared molecular transition. 相似文献
10.
V.V. Guryanov A.N. Fahrutdinova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area. 相似文献
11.
D.L. DeVincenzi P.D. Stabekis J.B. Barengoltz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(8):13-21
In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained by planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a new planetary protection policy, with the following key features, is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls. Interpretation of the new policy for missions like Galileo, Mars Surface Sample Return, Saturn Orbiter with Twin Probes, and missions to comets are considered. In general, the new policy proposes elimination of all but documentation requirements for most planetary missions and simplification of the remaining compliance procedures. 相似文献
12.
G.D. Aburjania L.S. Alperovich A.G. Khantadze O.A. Kharshiladze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):624-627
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field. 相似文献
13.
Alessia De Iuliis Francesco Ciampa Leonard Felicetti Matteo Ceriotti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(9):2795-2811
Literature on solar sailing has thus far mostly considered solar radiation pressure (SRP) as the only contribution to sail force. However, considering a sail in a planetary mission scenario, a new contribution can be added. Since the planet itself emits radiation, this generates a radial planetary radiation pressure (PRP) that is also exerted on the sail. Hence, this work studies the combined effects of both SRP and PRP on a sail for two case studies, i.e. Earth and Venus. In proximity of the Earth, the effect of PRP can be significant under specific conditions. Around Venus, instead, PRP is by far the dominating contribution. These combined effects have been studied for single- and double-sided reflective coating and including eclipse. Results show potential increase in the net acceleration and a change in the optimal attitude to maximise the acceleration in a given direction. Moreover, an increasing semi-major axis manoeuvre is shown with and without PRP, to quantify the difference on a real-case scenario. 相似文献
14.
M. Alexander P. Anz T. Hyde A. Hargrave W. Tanner L. Lodhi S. Lodhi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):27-30
Extensive studies have been conducted concerning individual mass, temporal and positional distribution of submicron rocky ejecta existing in the satellite-planetary gravitational sphere of influence. The transit time of the major portion of the ejecta that is transported from the satellite's gravitational sphere of influence to the planetary magnetopause is about one week and represents a mass loading pulse occurring each satellite orbit. The mass-flux distributions of lunar ejecta at the surface of the magnetopause for a complete lunar orbit are presented. Spatial mass densities of lunar ejecta in specific zones of the magnetosphere provide a means to compare sporadic interplanetary dust spatial mass densities in the same zones. 相似文献
15.
T.M. Eneev N.N. Kozlov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):201-215
Evolution of a system consisting of a great number of bodies that are gravitationally interacting and aggregating in contacts is considered. Body motions take place in the gravitational field of a central massive body (Sun or planet) in the same plane and at the initial time of system evolution orbits of all bodies are circular. It is shown that during evolution of the protoplanetary cloud, ring zones of matter rarefaction and condensation develop. Development of the condensation zones leads to the formation of planets, the most part of which acquire a direct rotation about their axes. In the case under consideration, approximate agreement between the law of planetary distances and that of geometric progression takes place as it is observed in planetary and satellite systems. The formation of the terrestrial planets and Jovian planets has been simulated. The principal numerical results have been obtained through digital simulation of planetary accumulation. 相似文献
16.
Enrico Mai Jürgen Müller Jürgen Oberst 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):728-749
Classical planetary ephemeris construction comprises three major steps which are to be performed iteratively: numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of observations (reduction step), and optimization of model parameters (adjustment step). In future, this approach may become challenged by further refinements in force modeling (e.g. inclusion of much more significant minor bodies than in the past), an ever-growing number of planetary observations (e.g. the vast amount of spacecraft tracking data), and big data issues in general. In order to circumvent the need for both the inversion of normal equation matrices and the determination of partial derivatives, and to prepare the ephemeris for applications apart from stand-alone solar-system planetary orbit calculations, here we propose an alternative ephemeris construction method. The main idea is to solve it as an optimization problem by straightforward direct evaluation of the whole set of mathematical formulas, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and potential numerical difficulties. The usual gradient search is replaced by a stochastic search, namely an evolution strategy, the latter of which is perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach allows for multi-criteria optimization and time-varying optima. These issues will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of a generalized physical state (orbit, size, shape, rotation, gravity, ) of celestial bodies (planets, satellites, asteroids, or comets), and/or if one seeks near real-time solutions. Here, we outline the general idea and exemplarily optimize high-correlated asteroidal ring model parameters (total mass and heliocentric radius), and individual asteroid masses, based on simulated observations. 相似文献
17.
18.
R. Stuhlmann M. Wiegner H. Knottenberg J. Wirth D. Hennings 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):133-139
The concept to estimate space averages of the reflected solar exitance at the top of the atmosphere (TOA) from narrow field of view satellite instruments is presented. The largest errors, of about 2–25 %, in the estimated exitance are induced by the bidirectional function to convert radiances to exitances. 相似文献
19.
S.K. Atreya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):31-40
The atmospheres and ionospheres of ringed planets can be, and perhaps are, modified by the injection of gaseous neutral and ionized species, and dust of ring origin. Although no direct evidence for such interaction exists, many of the unresolved characteristics of planetary composition, thermal structure and ionosphere would be understood if the rings supplied certain materials to their parent planets. 相似文献
20.
P M Sterns L I Tennen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):281-284
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars. 相似文献