首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A predictability of the stratospheric zonal winds above 38 km during the turnaround is an essential parameter for planning of the high-altitude scientific balloon flights. This information is more relevant in the case of Hyderabad balloon facility which is closer to equator and has much more unstable wind reversal patterns which appears to have changed enormously during the last decade probably in correlation with the global warming. With a majority of our flights reaching the altitudes of 38–42 km and the requirement of long float durations, a prior knowledge of wind pattern during the summer and winter turnaround seasons is highly desirable. Furthermore, the flight operation corridor for balloon flights from Hyderabad is limited to 400 km and though in the west direction there are flat lands, in all other three directions, the landscape is dotted by water bodies, reserve forests and hilly terrain, and therefore need of such a data is essential. In order to establish the climatology of the stratospheric winds and study their inter-annual variability over Hyderabad for the turnaround periods, we have made a detailed analysis of the United Kingdom Meteorological office data between 2000 and 2007, to derive average wind parameters (magnitude, direction) at different ceiling altitudes above 38 km. These results can be used only as general trend of stratospheric wind and should not be the limitation of the UKMO Data.  相似文献   

2.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28′N, Longitude 78°35′E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at ?80°C., whereas the tropopause temperatures over equatorial latitudes vary between ?80°C and ?90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to ?80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.  相似文献   

3.
Gravity measurements from a high-altitude balloon can verify global and upward-continued gravity models. A gravimeter suspended beneath a balloon is in a dynamic, and largely unpredictable, environment sensing accelerations due to gravity and balloon motions. Independent measurements of balloon motions using inertial navigation data combined with ground tracking data will allow for separation of balloon-induced accelerations from gravitational accelerations. Analysis of these data must estimate: 1) vertical gravimeter accelerations due to motion and gravity, 2) horizontal velocity to estimate the Eötvös effect, and 3) gravimeter position for comparison with gravity models. The first engineering test flight occurred on 11 October 1983, during the seasonal wind reversal and was very successful. Flight duration was approximately seven hours, with two hours of data collected at each of 30 km and 26 km altitudes. The results include gravity estimates, design criteria for future flights and feasibility analysis for vertical gravity profiles during ascent and descent.  相似文献   

4.
The 2nd Polar Patrol Balloon campaign (2nd-PPB) was carried out at Syowa Station in Antarctica during 2002–2003. Identical stratospheric balloon payloads were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. A very pronounced negative ion conductivity enhancement was observed at 32 km in the stratosphere below the auroral zone on 27 January 2003 from 1500 to 2200 UT. During this event, the conductivity doubled for an interval of about 7 h. This perturbation was associated with an extensive Pc 1 or Pi 1 wave event that was observed by several Antarctic ground stations, balloon PPB 10, and the Polar spacecraft. No appreciable X-ray precipitation was observed in association with this event, which would point to >60 Mev proton precipitation as a possible magnetosphere–stratosphere coupling mechanism responsible for the conductivity enhancement. Such precipitation is consistent with the wave data. During the latter half of the event, Ez was briefly positive. There was a tropospheric Southern Ocean storm system underneath the balloon during this interval. If the event was associated with this storm system and not energetic proton precipitation, the observations imply an electrified Southern Ocean storm and major perturbations in stratospheric conductivity driven by a tropospheric disturbance. This event represents a poorly understood source for global circuit current. Precipitating energetic proton data from Akebono and NOAA POES spacecraft show significant >16 MeV precipitation was occurring at the location of PPB 8 but not PPB 10, suggesting that proton precipitation was, in fact, the responsible coupling mechanism.  相似文献   

5.
Activities in scientific ballooning in Japan during 1998–1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.  相似文献   

6.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented.On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells.  相似文献   

7.
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth’s atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.  相似文献   

8.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.  相似文献   

9.
A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10?3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.  相似文献   

10.
Properties of tandem balloons connected by extendable suspension wires   总被引:1,自引:0,他引:1  
The tandem balloon system has been known as a candidate system for long duration flight balloons. In this paper, the properties of the system are analytically studied in a new way by introducing an extendable suspension wire in the Sky Anchor configuration, which consists of a zero-pressure main balloon suspending a payload and a super-pressure balloon suspended below the payload. It was found that extension of the suspension wire between the payload and the super-pressure balloon can extend the capability of the tandem system; the altitude of the zero-pressure balloon can be changed without any consumables except some energy, and the day–night oscillation of the balloon altitude can be suppressed. This property is useful as the vehicle for long duration flights. It is also pointed out that the method to control the altitude of a balloon using an additional suspended super-pressure balloon can also be applied for super-pressure balloons.  相似文献   

11.
Development overview of the revised NASA Ultra Long Duration Balloon   总被引:1,自引:0,他引:1  
The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ∼176,000 m3 (∼6.2 MCF – Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ∼176,000 m3 (∼6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.  相似文献   

12.
The Passepartout sounding balloon transportation system for low-mass (<<1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.  相似文献   

13.
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights.  相似文献   

14.
The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long duration balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, “pGAPS”, was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.  相似文献   

15.
This paper describes the systems for long duration flights developed in Japan for scientific observations. Much efforts have been expended to evolve systems for long duration flights in Japan, by controlling the balloon trajectories with a knowledge of wind pattern at high altitudes over Japan. These systems called “Cycling Balloon”, “Boomerang Balloon” and “New Boomerang Balloon” have been successfully used for the observations by keeping the balloons close to the balloon station.“Relay Balloon” is another system to extend the telemetry range by using an additional balloon as a relay station to link the telemetry from the main balloon.Some detailes of the exhaust valve, ascent meter and automatic level control devices used for the balloon control are also described in the paper.  相似文献   

16.
The observation of large solar flares on high altitude balloons requires long duration balloon flights because large flares are infrequent and cannot be predicted with enough reliability and lead time to allow a conventional balloon to be launched and reach altitude before the flare occurs. With the many weeks at float altitude expected for a long duration flight, the probability of “catching” a large flare during solar maximum becomes reasonably high and the study of phenomena which heretofore have required a satellite become accessible to a balloon platform. One example of this type of experiment is the observation of neutrons produced by the interaction of flare accelerated nucleons with the solar atmosphere. Because the neutrons are produced immediately by the flare accelerated particles and are unaffected by their transmission through the upper solar atmosphere and the intervening magnetic fields, their observation at 1 A.U. will provide direct information on the flare acceleration process. Specifically, a measurement of the neutron energy and time spectra will yield the energy spectrum of the charged nucleons in the interval 50 to 500 MeV/amu, the charged particle anisotropy, the height of the acceleration region for limb flares, and information on the two-stage acceleration process. Because the γ-ray spectrum is also sensitive to these factors, a combined neutron and γ-ray measurement will provide a much more stringent test of flare models than either done separately. CWRU and the University of Melbourne have designed the EOSCOR (Extended Observation of Solar and Cosmic Radiation) detector to have the necessary sensitivity to detect neutrons from a flare 0.1 the size of the 4 Aug. 1972 event and to be compatible with the constraints of the long duration balloon system. The detector has been test flown on short duration balloon flights and calibrated at En = 38, 58, and 118 MeV. It is planned to launch it on a long duration balloon flight from Australia in December 1982 when simultaneous γ-ray observations will be possible with the SMM and/or HINTORI satellites.  相似文献   

17.
We describe the fabrication and flight performance of a balloon-borne large area hard X-ray (20–100 keV) telescope for spectral studies of discrete cosmic X-ray sources. The telescope consists of two multi-wire Xenon filled proportional counters of effective area 1200 cm2 each, mounted on an orientable platform. It can be pre-programmed to track any celestial source with a pointing accuracy of 0.5 degrees. For one hour of observation the telescope has a 5 σ detection sensitivity of 10−5 ph cm−2 s−1. The laboratory test results and the performance in a series of balloon flights conducted in 1984–1986 period is discussed and the preliminary results obtained for some X-ray sources are presented.  相似文献   

18.
In this note the state of the art of our knowledge of the high energy sky will be reviewed, with particular regard to the hard X-ray range.The use of more complex and sophisticated payloads that is necessary to obtain up-to-date results mandatory to achieve a better understanding of the actual scenario in the range 15–300 keV, causes new continuous requirements for long duration balloon flights.The needs for astronomy oriented scientific ballooning will be considered and discussed.  相似文献   

19.
An automatic navigation and aspect sensing system is being developed for use in trans-Australia and possible globe circling balloon flights by the University of Tasmania stabilised platform for X-ray astronomy. This system comprises an Omega receiver, three axis magnetometer, alt-az. mounted CID camera and an on-board computer. The computer uses the Omega receiver output or other dead reckoning information together with the magnetometer data to calculate the approximate position of selected bright stars. It then drives the camera to each of these positions in turn and determines from the camera output the precise coordinates relative to the platform of each of these stars. From this information it will fix the geographic coordinates of the platform to within a few nautical miles and will determine the true platform azimuth with a precision of approximately 0.1°. These data will be passed to the platform aspect control computer via a serial link.  相似文献   

20.
Low speed data from high altitude scientific balloon flights can be retrieved by geostationary satellites through existing data collection platform systems. Higher speed data of the order of 1 kbit/s create a more difficult problem, particularly if a response is to be made to the balloon payload in near real time. Different geostationary satellite methods to achieve these more demanding requirements are reviewed, and the more interesting cases identified for possible future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号