首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The NASA Gamma-Ray Observatory, GRO, will carry two instruments for low energy gamma-ray astronomy. The ‘Oriented Scintillation Spectrometer Experiment - OSSE’ represents the latest step in the evolution of collimated detectors. A large detection area, simultaneous source and background observation and rigorous control over systematic errors yield significant improvements in sensitivity over earlier instruments. The ‘Imaging Compton Telescope - COMPTEL’ brings the proven concept of the Compton telescope to the state of the art level. Position sensitive scintillation detectors make it possible to generate sky images with a resolution of about 2° over a f.o.v. of about 1 sr. The complementary nature of these two experiments promises a first in-depth exploration of the sky in a wavelength range which covers the transition from the X-ray sky to the apparently unrelated high energy gamma-ray sky. Possible directions of further evolution of these experiments will be discussed.  相似文献   

2.
Recent gamma-ray observations of two Seyfert Galaxies are interpreted in terms of electron-positron pair annihilation radiation. A simplified scenario is envisaged in which a massive black hole is accreting material from an optically thin disk characterized by a hot (T > 109 °K) e± plasma. At these very high temperatures the 511 keV line emission loses its characteristic features to become both broadened and blue shifted. Observational X and gamma-ray data are used to investigate the possibility that the “bump” in the spectral emission at photon energies E ~ 1 MeV observed in Seyfert galaxies may be due to this annihilation feature. In particular the self consistency of the parameters estimated from the gamma-ray data is explored. Furthermore we investigate the possibility that this annihilation feature may be mirrored in the cosmic diffuse background and, under this assumption, we calculate the maximum temperature of the annihilation region and the average annihilation rate for Seyfert galaxies.  相似文献   

3.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

4.
We present a large area, balloon borne, NaI(Tl) detector for low-energy gamma rays with temporal signature : FIGARO.The main detector is a mosaic of 12 NaI(Tl) tiles 22.5 × 15 × 5 cm, for a total geometric area of 4050 cm2.In the energy band 140 keV - 6 MeV, the expected background counting rate at float altitude is in the range of two to three thousands counts per second.For pulsar analysis the expected 3δ sensitivity for 5 hours exposition time is 2.5 10?4 ph/cm2.s.MeV (150–500 keV) 1.5 10?4 ph/cm2.s.MeV (1–6 MeV). This performance, together with the large effective area and the relatively short duration of a balloon flight, make FIGARO particularly suitable for the identification of sources by means of temporal analysis.For objectives in the Northern sky, including the Crab pulsar, a transmediterranean flight is planned for the summer of 1982 ; a Southern mission is scheduled in Brazil for the fall of 1983 (Vela, PSR 1822-09).  相似文献   

5.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   

6.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

7.
This note describes the HXR80M large area hard X-Ray Astronomy experiment. The payload is scheduled for a flight on board of a transatlantic balloon to be launched the next July from the Milo Base (Sicily), in the framework of the CNR experimental transatlantic campaign.The detectors are two Multiwire Spectroscopic Proportional Chambers (MWSPC) having 2,700 cm2 sensitive area each.The two detectors are filled with an extremely pure Xenon-Isobutane mixture (impurity less than 1ppm) at high pressure (3–6 Atm) in order to obtain good spectral resolution and high efficiency. The field of view of the MWSPC's is limited by an array of three collimators each, having respectively 8°×8° and 5°×5° FWHM.The on board data handling is performed by microprocessor controlled electronics. In particular a micro Multichannel Analyzer (μMCA) is employed to obtain the spectrum of the detected photons. The scientific and housekeeping data are send to ground through a 1.2 Kbit PCM HF Telemetry link.The scientific aim of the experiment is the survey of the sky belt around the 38th parallel and in particular the observation of faint galactic objects and galactic binary systems in the range 15–200 keV.  相似文献   

8.
A large area (6000 cm2) actively shielded low energy gamma-ray telescope is going to be built by an Anglo-Italian collaboration. The telescope, named ZEBRA, will be capable of producing images of the X and gamma ray sky in the energy range 0.015–20 MeV with an intrinsic angular resolution of a few tenths of a degree. A prototype detector has been built in order to experimentally study the main characteristics of the detection plane. The preliminary results obtained during a balloon flight from Trapani, Sicily in July 1981 are presented.  相似文献   

9.
Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth’s atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62?cm?×?7.62?cm and another one is rectangular cuboid of 10.16?cm?×?10.16?cm?×?40.64?cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events.For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector’s response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors, especially for the experiments conducted during daytime such as solar eclipses etc.  相似文献   

10.
A directional detector for γ-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a Uniformly Redundant Array (URA), allows imaging in 4° square sky bins over a 16° X 24° field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within ?1°. A complementary “anti-mask” greatly reduces systematic effects arising from non-uniform background rates amongst the detectors. The telescope has an effective area of 190 cm2 and an energy resolution of 19.5% FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the “anti-mask”, are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.  相似文献   

11.
针对空间天气活动机理、机制及规律等方面研究需要,Kuafu卫星计划提出对日冕中性原子进行成像观测.通过分析日冕中性原子观测的科学意义和观测方法,采用编码调制方法进行日冕中性原子成像,并依据科学指标完成了整个仪器初步方案设计和仿真计算.仪器测量的中性原子能量范围为0.5~6MeV,视场范围为360°×10°.利用高压静电偏转电极板去除测量范围内的带电粒子,仪器由m序列编码调制栅网与硅半导体构成的成像结构及电子学箱共同组成.编码成像方案和仿真计算奠定了日冕中性原子成像观测的技术基础,可为空间天气中长期规律及预报等研究提供技术手段.   相似文献   

12.
Centaurus A (Cen A, NGC 5128) is the nearest active galaxy and, notably, the viewing angle with respect to the jet axis is very large (> 70°). A first contemporaneous OSSE, COMPTEL, and EGRET spectrum obtained in October 1991 covers an energy range from 50 keV up to 1 GeV. This γ-ray broad-band spectrum was taken when Cen A was in an intermediate emission state as defined by the BATSE X-ray light-curve. The first simultaneous multiwavelength spectrum from radio to γ-rays was measured in July 1995 when Cen A was in a low emission state (the prevailing state for the last 7 years). The different spatial and temporal resolution in the different frequency regimes produces problems in the construction and interpretation of the multiwavelength spectra. These are addressed in this paper. The detection of emission > 1 MeV makes the inclusion of such high-energy emission into models for the spectral energy distribution mandatory.  相似文献   

13.
Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10?4 to 10?3 ph/cm2-sec have been achieved for steady sources and 10?2 to 1 ph/cm2-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. These results indicate that gamma-ray spectroscopy is relevant to a wide range of astrophysical problems and is becoming a major part of astronomy. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of ~ 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of ~ 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.  相似文献   

14.
The results of investigations of wave processes with periods 2 hours on their influence and on the night sky airglow intensity are given. The observations were carried out by multichannel spectrometer for three seasons of 1985–1988 at the optical testing ground Maimaga (γ = 63°N; λ = 129, 5°E). The synchronous detection of two and sometimes of three emissions of night sky airglow yielded the oppotunity to track a vertical travel of waves and to estimate their parameters. In most cases the waves propagate upward, i.e. the sources of waves were below mesosphere. The estimated vertical velocity change within 0,9-3,3 m/s and vertical wave length - within 18–85 km. A horizontal velocity varies from 83 to 330 m/s. The wave activity (the occurence frequency) and their amplitude in winter is higher than in spring. The estimated energies transfered by waves to the upper atmosphere are in winter 3.8·10−3 W/m2 and in spring 2.7·10−3 W/m2.  相似文献   

15.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   

16.
The GAMMA-400 currently developing space-based gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ~20?MeV to several TeV in the highly elliptic orbit (without shadowing the telescope by the Earth) continuously for a long time. The physical characteristics of the GAMMA-400 gamma-ray telescope, especially the angular and energy resolutions (at 100-GeV gamma rays they are ~0.01° and ~1%, respectively), allow us to consider this space-based experiment as the next step in the development of extraterrestrial high-energy gamma-ray astronomy. In this paper, a method to improve the reconstruction accuracy of incident angle for low-energy gamma rays in the GAMMA-400 space-based gamma-ray telescope is presented. The special analysis of topology of pair-conversion events in thin layers of converter was performed. Applying the energy dependence of multiple Coulomb scattering for pair components, it is possible to estimate the energies for each particle, and to use these energies as weight in the angle reconstruction procedure. To identify the unique track in each projection the imaginary curvature method is applied. It allows us to obtain significantly better angular resolution in comparison with other methods applied in current space-based experiments. When using this method for 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is about 4°.  相似文献   

17.
We present the analysis of data taken by the Space Application of Timepix Radiation Monitor (SATRAM). It is centred on a Timepix detector (300?μm thick silicon sensor, pixel pitch 55?μm, 256?×?256 pixels). It was flown on Proba-V, an Earth observing satellite of the European Space Agency (ESA) from an altitude of 820?km on a sun-synchronous orbit, launched on May 7, 2013. A Monte Carlo simulation was conducted to determine the detector response to electrons (0.5–7?MeV) and protons (10–400?MeV) in an omnidirectional field taking into account the shielding of the detector housing and the satellite. With the help of the simulation, a strategy was developed to separate electrons, protons and ions in the data. The measured dose rate and stopping power distribution are presented as well as SATRAM’s capability to measure some of the stronger events in Earth’s magnetosphere. The stopping power, the cluster height and the shape of the particle tracks in the sensor were used to separate electrons, protons and ions. The results are presented as well. Finally, the pitch angles for a short period of time were extracted from the data and corrected with the angular response determined by the simulation.  相似文献   

18.
The IPM detector consists of two separate impact ionization detectors, one of them covered by a 2.5 μm thick plastic film and a piezoelectric sensor mounted to the back of the joint impact plate. First impact tests, with iron projectiles in the mass range 10?15 to 10?9 g and in the speed range 1 km/s to 70 km/s, were performed with the calibration (FS) and the flight (F) model of this detector. The charge yield at 69 km/s impact speed (flyby speed of GIOTTO) has been extrapolated from the data and amounts to 400 Coulombs per gram. This corresponds to a preliminary sensitivity threshold for the impact ionization detector of about 6×10?17 g. The penetration limit introduced by the plastic film is about 10?14 g for iron particles. Only the biggest particles used for the test produced signals at the piezoelectric sensor. If one assumes an energy dependence of the piozoelectric signal, a preliminary sensitivity threshold of about 10?13 g at 69 km/s can be established.  相似文献   

19.
A better understanding of the origin of gamma-ray bursts requires a significant improvement in present detector sensitivity, particularly for fine line spectroscopy in the 5–200 keV energy range. This paper presents a critical analysis of some detectors which may be used to obtain high energy resolution measurements of photon spectra from cosmic gamma-ray burst sources.  相似文献   

20.
Since the fall of 1978, two Earth-orbiting spacecraft sensors, SAM II, for Stratospheric Aerosol Measurement II, and SAGE, for Stratospheric Aerosol and Gas Experiment have been monitoring the global stratospheric aerosol. These experiments use the Sun as a source to make Earth-limb extinction measurements during each spacecraft sunrise and sunset. This paper describes the global aerosol data base (climatology) that is evolving. Seasonal and hemispheric variations such as the springtime layer expansion with warming temperatures and the local wintertime polar stratospheric clouds (PSC's) will be described. The PSC's enhance extinction by up to two orders of magnitude and optical depths by as much as an order of magnitude over the background 1000 nm values of about 1.2 × 10?4 km?1 and 1.3 × 10?3, respectively. The detection and tracking of a number of volcanoes whose effluents penetrated the tropopause are also described. The mass of new aerosol injected into the stratosphere from each volcano is estimated. The May 1980 eruption of Mount St. Helens, for example, produced about 0.32 × 109 kg of new stratospheric aerosol enhancing the Northern Hemispheric aerosol by more than 100 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号