首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have estimated temperatures from meteor radar measurements using the gradient method and the full width at half maximum method over Kazan (56°N 49°E) and Collm (51°N, 13°E). The time series cover the period 2016–2019. The temperature gradient model is constructed from SABER temperature observations. We demonstrate that annual mean, amplitudes and phases of the annual and semiannual oscillations of the radar temperatures are close to those of the MLS and SABER temperatures. The annual mean temperatures over Kazan and Collm differ non-significantly. The seasonal variability of the radar temperature is mostly due to the annual cycle which tends to grow with latitude. The gradient method produces temperatures which agree with the SABER temperatures better than with the MLS ones. The harmonics of the annual oscillations from periods of 73 days up to periods of about 40 days are the most significant day-to-day temperature oscillations and have zonal wavenumber zero. Their periods and phases are in good correspondence with those of the MLS and SABER ones. We also show some results which demonstrate that at 56°N the FWHM method is not as robust as the gradient method.  相似文献   

2.
During the last decade a large number of radars (~12) have been developed, which have produced substantial quantities of tidally-corrected mean winds data. The distribution of the radars is not global, but many areas are well covered: the Americas with Poker Flat (65°N), Saskatoon (52°N), Durham (43°N), Atlanta (34°N), Puerto Rico (18°N); Europe with Kiruna (68°), Garchy (47°N) and Monpazier (44°N); and Oceania with Christchurch (44°S), Adelaide (35°S), Townsville (20°S), and Kyoto (35°N). Zonal and meridional wind height-time cross-sections from 6080 km (MF/Meteor Radar) to ~110 km have been prepared for the last 5–6 years. They are compared with cross-sections from CIRA-72 for zonal winds, and Groves (1969) for meridional winds.It is shown that while CIRA-72 is still a useful model for many purposes, significant differences exist between it and the new radar data. The latter demonstrate important seasonal, latitudinal, longitudinal and hemispheric variations. The new meridional cross-sections are of great value. The common features with Groves (1969) are the equatorward cells in summer near 85 km; however their strength (~10 ms?1) and size are less. Systematic and somewhat different variations emerge at higher (?52°N) and middle (35–44°) latitudes.  相似文献   

3.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

4.
We present results of wind measurements near the mesopause carried out with meteor radars (MRs) at Collm (51°N, 13°E), Obninsk (55°N, 37°E), Kazan (56°N, 49°E), Angarsk (52°N, 104°E) and Anadyr (65°N, 178°E) from October 1, 2017 till March 31, 2018. The Collm and Kazan MRs are SKiYMET radars with vertical transmission and radio echo height finding, while the other radars operate with horizontal transmission and without height finding. We paid particular attention to the meridional wind variability with periods of 4–6 days and 9–11 days. The waves with these periods are seen as spots of the wave activity in the wavelet spectra and include oscillations with different periods and different discrete zonal wavenumbers. These wave packets successively propagate as a group of waves from one site to another one in such a way that they are observed at one site and almost disappear at the previous one. The 4–6 wave group includes planetary-scale oscillations (individual spectral components) which have eastward phase velocities and mostly zonal wavenumbers 2 and 3, and the vertical wavelength exceeds 70 km at middle latitudes. The source of the oscillations is the polar jet instability. The wave group itself propagates westward, and the amplitudes of wind oscillations are approximately 5–6 m/s as obtained from the wind data averaged over the meteor zone. The 9–11 day wave set propagates westward as a group and mainly consists of spectral components which have westward phase velocity and zonal wavenumber 1. Amplitudes of these wind perturbations strongly vary from station to station and can reach, approximately, 8 m/s. The vertical wavenumber is 0.014 km−1 as taken from the Kazan and 0.05 km−1 according to the Collm data. We obtained a global view on the waves by using the AURA MLS geopotential data. We found a good correspondence between wave features obtained from the MR wind measurements and the MLS data. To our knowledge, such a wave propagation of planetary wave in the mesosphere/lower thermosphere (MLT) region has so far not obtained much attention.  相似文献   

5.
The mid-latitude mesosphere and lower thermosphere (MLT) wind speeds measured by two SKiYMET meteor radars (MRs) at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016–2017 were analyzed to study longitudinal wind structures. The differences between monthly mean prevailing wind speeds and tidal amplitudes were compared with the corresponding differences obtained from TIMED/TIDI satellite winds and gradient wind speeds from the AURA/MLS instrument. It is shown that the MR wind difference between the two sites is statistically significant. The difference of the horizontal prevailing winds can be explained by a superposition of the background zonal flow, which is different at the two latitudes, with stationary planetary waves of different origin. Non-migrating tides contribute significantly to the difference of the semidiurnal tidal winds between the two sites.  相似文献   

6.
The spread-F echo of ionograms and scintillation of satellite signal propagation along the Earth-space path are two typical phenomena induced by ionospheric irregularities. In this study, we obtained spread-F data from HF (high frequency) digital ionosonde and scintillation index (S4) data from L-band and UHF receivers at low- and mid-latitudes in China during the 24th solar cycle. These four sites were located at Haikou (HK) (20°N, 110.34°E), Kunming (KM) (25.64°N, 103.72°E), Qingdao (QD) (36.24°N, 120.42°E), and Manzhouli (MZL) (49.56°N, 117.52°E). We used these data to investigate spread-F and scintillation occurrence percentages and variations with local time, season, latitude and solar activity. A comparative study of spread-F and scintillation occurrence rates has been made. The main conclusions are as follows: (a) FSF occurred mostly during post-midnight, while RSF and scintillation appeared mainly during pre-midnight at HK and KM; (b) FSF occurrence rates were larger at QD and MZL than expected; (c) the FSF occurrence percentages were anti-correlated with solar activity at HK and KM; meanwhile RSF and scintillation occurrence rates increased with the increase of solar activity at this two sites; (d) the highest FSF occurrence rates mostly appeared during the summer months, while RSF and scintillation occurred mostly in the equinoctial months at HK and KM; (e) the scintillation occurrence was usually associated with the appearance of RSF, probably due to a different physical mechanism comparing with FSF. Some of these results verified the conclusions of previous papers, whereas some show slight difference. These results are important in understanding ionospheric irregularities variations characteristic at low- and mid-latitudes in China.  相似文献   

7.
The Bologna meteor radar was operational during two winter campaigns, from 6 January 1982 to 1 February 1982 and from 10 December 1982 to 2 February 1983. As occurrence of minor stratospheric warmings has been reported for these intervals, possible effects on meteor wind over Bologna related to this kind of warming are pointed out. Zonal and meridional prevailing winds are found to exhibit the maximum peak to peak value in their oscillations when a minor stratospheric warming reaches such an intensity that ΔT(90°N–60°N) at 10 mbar is reversed. Diurnal and semidiurnal tides exhibit usual amplitude variations, but the semidiurnal tide has a noticeable phase shift at the time of a minor warming occurrence, while a similar shift is less evident in the diurnal tide phase.  相似文献   

8.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

9.
Monthly variations of averaged nighttime thermospheric winds have been investigated over Abuja, Nigeria (Geographic: 9.06°N, 7.5°E; Geomagnetic: 1.60°S). The reports are based on Fabry-Perot interferometer measurements of Doppler shifts and Doppler broadening of the 630.0 nm spectral emission. The results were obtained during a period of weak solar activity with the solar flux (F10.7) typically below 70 solar flux units. Inspection of the average monthly thermospheric winds from October 2017 to December 2017 found December meridional winds to be more equatorward than the October and November winds. Zonal winds are eastward with pre-midnight maximum speeds going above 100 m/s. Compared to Jicamarca zonal winds in the Peruvian sector for the same month of October, the magnitude of maximum Abuja zonal wind speed is weaker. We compare the observed diurnal variation with the recently updated Horizontal wind model (HWM 14). Most of the observational features of thermospheric wind diurnal variation are captured in the model variation. The HWM14 generally showed good agreement with the Abuja October and November zonal wind observations but overestimates the December meridional winds. Expected longer period analysis of the results from Abuja will stimulate a better understanding of wind climatology over the West African sector.  相似文献   

10.
This study characterizes total electron content (TEC) measured by Global Positioning System (GPS) over African equatorial ionization anomaly (EIA) region for 2009–2016 period during both quiet geomagnetic conditions (Kp?≤?1) and normal conditions (1?>?Kp?≤?4). GPS-TEC data from four equatorial/low-latitude stations, namely, Addis Ababa (ADIS: 9.04°N, 38.77°E, mag. lat: 0.2°N) [Ethiopia]; Yamoussoukro (YKRO: 6.87°N, 5.24°W, mag. lat: 2.6°S) [Ivory Coast]; Malindi (MAL2; 3.00°S, 40.19°E, mag. lat: 12.4°S) [Kenya] and Libreville (NKLG; 0.35°N, 9.67°W, mag. lat: 13.5°S) [Gabon] were used for this study. Interesting features like noontime TEC bite-out, winter anomaly during the ascending and maximum phases of solar cycle 24, diurnal and seasonal variations with solar activity have been observed and investigated in this study. The day-to-day variations exhibited ionospheric TEC asymmetry on an annual scale. TEC observed at equatorial stations (EIA-trough) and EIA-crest reach maximum values between ~1300–1600 LT and ~1300–1600 LT, respectively. About 76% of the high TEC values were recorded in equinoctial months while the June solstice predominantly exhibited low TEC values. Yearly, the estimated TEC values increases or decreases with solar activity, with 2014 having the highest TEC value. Solar activity dependence of TEC within the EIA zone reveals that both F10.7?cm index and EUV flux (24–36?nm) gives a stronger correlation with TEC than Sunspot Number (SSN). A slightly higher degree of dependence is on EUV flux with the mean highest correlation coefficient (R) value of 0.70, 0.83, 0.82 and 0.88 for quiet geomagnetic conditions (Kp?≤?1) at stations ADIS, MAL2, NKLG, and YKRO, respectively. The correlation results for the entire period consequently reveals that SSN and solar flux F10.7?cm index might not be an ideal index as a proxy for EUV flux as well as to measure the variability of TEC strength within the EIA zone. The estimated TEC along the EIA crest (MAL2 and NKLG) exhibited double-hump maximum, as well as post-sunset peaks (night time enhancement of TEC) between ~2100 and 2300 LT. EIA formation was prominent during evening/post-noon hours.  相似文献   

11.
中国廊坊中间层和低热层大气平均风观测模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100km的中间层与低热层(Mesosphere and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表明平均纬向风和经向风都表现出明显的季节变化特征.平均纬向风在冬季MLT盛行西风,极大值位于中间层顶,随高度增加西风减弱;在夏季中间层为东风,低热层为强西风,风向转换高度约为82km.平均经向风在冬季以南风为主,在夏季盛行北风.纬向风和经向风在春秋两季主要表现为过渡阶段.流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致,但WACCM4模式纬向风和经向风风速偏大,而HWM93模式纬向风和经向风风速偏小.  相似文献   

12.
In an earlier report [1] the authors proposed an Indian Standard Tropical Atmosphere (ISTA1) from mean sea level to 20 km. This proposal describes adequately the mean conditions from 0° to about 30°N. The present work extends ISTA1 to the higher altitude of 50 km based oni. World Data Center A reports on Rocket firings [2],ii. M-100 rocket data for Thumba, India [3],iii. Northern Reference Atmospheres data of Cole and Kantor [4], andiv. Southern Reference Atmospheres data of Koshelkov [5].The proposed atmosphere, called ISTA7, has a sea level temperature of 30°C and a constant lapse rate of 6.5°C/km up to 16 km, as in ISTA1; from a temperature of -74°C at this altitude, there is a constant lapse rate of -2.3°C/km up to 46 km where the temperature is -5°C; the temperature remains constant thereafter up to 50 km. The fact that variations with longitude are weak except at very high latitudes [4], together with the fact that around 50 km, the temperature increases from low to high latitudes, lead us to propose a constant temperature of -5°C between 46 and 50 km, even though this temperature is slightly higher (by about 5°C) than the Thumba data.1/  相似文献   

13.
Ionograms recorded from four ionosonde stations along the Western Pacific (WestPac) chain (about 122°E geographic, 192°E geomagnetic) are employed to study the occurrence of an additional layer at F-region altitudes during the 1–15 March 1998 WestPac campaign. It was found that the appearance of the additional layer at the local noontime hours is a typical phenomenon at Parepare (4°S geographic, 14.8°S geomagnetic). The additional layer was not clearly observed at Cebu (0.4°S geomagnetic) and Manila (3.7°N geomagnetic), and was not observed at Chung-Li (14.2°N geomagnetic) during the campaign. Furthermore, the additional layer was not seen from any of the station on 11 March 1998, a magnetically disturbed day. These results indicate that the fountain effect (produced by E×B motion) plays an important role in the formation of the additional layer. However, they also suggest the dynamics of the layer formation are in some way influenced by the location of the station relative to the geographic equator.  相似文献   

14.
We present an analysis of the response of quasi-10-day waves (Q10DWs) to the sudden stratospheric warming (SSW) event which occurred on March 23, 2020. The Q10DWs are observed in the mesosphere and lower thermosphere (MLT) region by three meteor radars, which are located at middle latitudes along the 120°E meridian from Mohe (MH, 53.5°N, 122.3°E), Beijing (BJ, 40.3°N, 116.2°E), to Wuhan (WH, 30.5°N, 114.6°E). The Q10DWs reveal similar temporal and altitudinal variations during the SSW in the MLT region at the three stations. The activities of Q10DWs are also captured in the temperature measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite in the MLT region. Further analysis of the Q10DW phases indicates that the Q10DWs might be in situ generated due to mesospheric instabilities at higher latitudes around MH and then propagate southward to lower latitudes at BJ and WH. The atmospheric instabilities are not directly responsible for the excitations of Q10DWs at lower latitudes, while the observed equatorward propagation of the Q10DWs is important. Our result provides the observational evidence for latitudinal couplings in the MLT region after the SSW onset, which is achieved by southward propagating planetary waves in the MLT region.  相似文献   

15.
A substantial quantity of wind data have been assembled from radar systems since CIRA-72 was formed: most of these radars include height ranging, and operate on a regular and even continuous basis. Systems include meteor and MF (medium frequency) Radars: an MST (mesosphere-stratosphere-troposphere) Radar (meteor mode); and an LF (low frequency) drift system. Latitudes represented are near 20° N/S, 35° N/S, 45° N/S, 50°N, 65° N/S. In all cases tidal oscillations were calculated so that corrected mean winds (zonal, meridional) are available - the meridional was not included in CIRA-72. Means for groups of years near 1980 are available, as well as individual recent years (1983, 1984) to allow assessment of secular trends: revised and improved analysis has been completed for several stations.Height-time cross-sections have been formed for each observatory: heights are typically ∼75–110 km, with time resolution of 7–30 days. Such detailed cross-sections were almost unknown before 1972. Comparisons with CIRA-72 are shown, and these emphasize the differences between hemispheres (NH, SH) in the radar winds. Other new winds from rockets and satellite radiances are contrasted with the radar set. There are important differences with the satellite-derived geostrophic winds (1973–78): possible explanations involve secular trends, longitudinal variations, and ageostrophy.  相似文献   

16.
An ion model of the lower ionosphere is proposed. It consists of four positive ions: O2+, NO+ and two cluster ions - a simpler CI1 and a more complex CI2. This model well explains the normal component of the winter anomaly (WA) in the D-region, which is recorded by absorption measurements on short radiowaves and rocket experiments at middle (40°N) and high (70°) latitudes. The higher values of the electron density during the winter appear as a result of the lower recombination because of smaller rates of cluster ion formation, i.e. the normal WA can be explained and modelled by the regular seasonal variations of composition, temperature and density.  相似文献   

17.
北驼峰区电离层GPS卫星闪烁事件时空特征及对通信的影响   总被引:1,自引:1,他引:0  
基于子午工程北大深圳站(22.59°N,113.97°E)电离层GPS双频接收机在2011年1月1日至2017年12月31日连续7年的长时间序列闪烁和TEC观测数据,分析不同太阳活条件下华南赤道异常北驼峰区观测到的GPS卫星L波段电离层闪烁事件时空分布特征及其对通信的影响.结果表明:GPS闪烁事件几乎都发生在夜间,且主要发生在春秋分月份;在不同太阳活动条件下,夜间GPS闪烁事件都主要发生在北驼峰区域靠近磁赤道的一侧,且GPS闪烁事件存在明显的东-西侧天区不对称性,即在台站西侧天区发生的闪烁事件明显偏多;在不同太阳活动条件下,弱闪烁事件伴随的TEC耗尽和卫星失锁事件比例相对较低,强闪烁事件则大部分都伴随着TEC耗尽和卫星失锁事件的发生.  相似文献   

18.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

19.
Neutral exospheric and lower thermospheric (100–130 km) temperatures from Thomson scatter measurements at Millstone Hill (42°N) are compared with CIRA temperatures with a view towards identifying deficiencies in the CIRA and recommending revisions. CIRA models the observed diurnal mean temperatures (T0) to within 10% over a wide range of solar conditions (75? F10.7 ? 250), but consistently underestimates the diurnal temperatures with maximum deviations approaching 50% of observed amplitudes (180–240 K) at solar maximum (1200 K ? T0 ? 1400 K). The observed semidiurnal amplitudes, which lie in the range of 20K–80K, are always underestimated and frequently by more than 50%. In the lower thermosphere, tidal oscillations of temperature of order 20K–40K occur which are not modelled by CIRA. In addition, an analysis of exospheric temperatures at Millstone Hill during a magnetic disturbance indicates a response within 1–2 hours from storm onset, whereas CIRA assumes a 6.7 hour delay. Although some of these deficiences are addressed by the more recent MSIS model, there exists a sufficient data base to recommend several additional revisions to the CIRA temperatures at this time.  相似文献   

20.
Intercomparisons between satellite retrieved temperatures (TIROS N series) and those derived from radiosonde and rocketsonde profiles have been made covering the years 1980–1984. Differences in the measurement parameters between 100 and 0.4 mbar (~16–55 km) are described; generally radiosonde/satellite differences are less than 1°K, while rocketsonde/satellite differences reach 7–8°K in the upper stratosphere. Comparisons between the various in situ devices indicate that radiosonde/rocketsonde differrences are less than 1°K while precision studies of the rocketsonde instrument find that the rocketsonde measurements are internally consistent to less than 1°K up to 50 km and to less than 3°K to 60 km. Density data obtained with the small rocketsondes (in situ thermistors and inflatable spheres) and with the large sounding rocket systems show that density measurements usually agree to within 15 percent up to 85 km. Comparisons of the various atmospheric parameters obtained from different instruments are important, however the usefulness of intermixing the measurements is obvious and increased emphasis should be placed on procedures for intermingling such data. Suggestions are made on how this might be accomplished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号