首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the driest parts of the Atacama Desert there are no visible life forms on soil or rock surfaces. The soil in this region contains only minute traces of bacteria distributed in patches, and conditions are too dry for cyanobacteria that live under translucent stones. Here we show that halite evaporite rocks from the driest part of the Atacama Desert are colonized by cyanobacteria. This colonization takes place just a few millimeters beneath the rock surface, occupying spaces among salt crystals. Our work reveals that these communities are composed of extremely resistant Chroococcidiopsis morphospecies of cyanobacteria and associated heterotrophic bacteria. This newly discovered endolithic environment is an extremely dry and, at the same time, saline microbial habitat. Photosynthetic microorganisms within dry evaporite rocks could be an important and previously unrecognized target for the search for life within our Solar System.  相似文献   

2.
Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products.  相似文献   

3.
Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).  相似文献   

4.
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5?m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2?m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5?g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260?g kg(-1)) and perchlorate (41.13?μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14?μg g(-1)) or formate (76.06?μg g(-1)) as electron donors, and sulfate (15875?μg g(-1)), nitrate (13490?μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.  相似文献   

5.
The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong f?hn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Ni?o of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.  相似文献   

6.
The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.  相似文献   

7.
Abstract The OMEGA/Mars Express hyperspectral imager identified gypsum at several sites on Mars in 2005. These minerals constitute a direct record of past aqueous activity and are important with regard to the search of extraterrestrial life. Gale Crater was chosen as Mars Science Laboratory Curiosity's landing site because it is rich in gypsum, as are some desert soils of the Cuatro Ciénegas Basin (CCB) (Chihuahuan Desert, Mexico). The gypsum of the CCB, which is overlain by minimal carbonate deposits, was the product of magmatic activity that occurred under the Tethys Sea. To examine this Mars analogue, we retrieved gypsum-rich soil samples from two contrasting sites with different humidity in the CCB. To characterize the site, we obtained nutrient data and analyzed the genes related to the N cycle (nifH, nirS, and nirK) and the bacterial community composition by using 16S rRNA clone libraries. As expected, the soil content for almost all measured forms of carbon, nitrogen, and phosphorus were higher at the more humid site than at the drier site. What was unexpected is the presence of a rich and divergent community at both sites, with higher taxonomic diversity at the humid site and almost no taxonomic overlap. Our results suggest that the gypsum-rich soils of the CCB host a unique microbial ecosystem that includes novel microbial assemblies. Key Words: Cuatro Ciénegas Basin-Gale Crater-Gypsum soil microbial diversity-Molecular ecology-Nitrogen cycle. Astrobiology 12, 699-709.  相似文献   

8.
We report the discovery of fossilized filamentous structures in samples of the lithified, volcaniclastic apron of Gran Canaria, which were obtained during Leg 157 of the Ocean Drilling Program (ODP). These filamentous structures are 2-15 μm in diameter and several hundred micrometers in length and are composed of Si, Al, Fe, Ca, Mg, Na, Ti, and C. Chitin was detected in the filamentous structures by staining with wheat germ agglutinin dye conjugated with fluorescein isothiocyanate (WGA-FITC), which suggests that they are fossilized fungal hyphae. The further elucidation of typical filamentous fungal morphological features, such as septa, hyphal bridges, and anastomosis and their respective sizes, support this interpretation. Characteristic structures that we interpreted as fossilized spores were also observed in association with the putative hyphae. The fungal hyphae were found in pyroxene phenocrysts and in siderite pseudomorphs of a basalt breccia. The fungal colonization of the basalt clasts occurred after the brecciation but prior to the final emplacement and lithification of the sediment at ~16-14 Ma. The siderite appears to have been partially dissolved by the presence of fungal hyphae, and the fungi preferentially colonized Fe-rich carbonates over Fe-poor carbonates (aragonite). Our findings indicate that fungi may be an important geobiological agent in subseafloor environments and an important component of the deep subseafloor biosphere, and that hydrothermal environments associated with volcanism can support a diverse ecosystem, including eukaryotes.  相似文献   

9.
载人航天器AIT中心微生物分布特征分析   总被引:4,自引:2,他引:2  
为更好地控制载人航天器中的微生物水平,指导未来航天器研制中微生物控制设计,文章采用撞击法对3个载人航天器AIT中心的空气菌落数量和菌种分布特征进行了分析。厂房菌落数比较结果显示:北京AIT中心的细菌水平显著高于其他地区AIT (P<0.05),天津AIT中心的真菌水平显著高于其他地区AIT (P<0.05),酒泉AIT中心的总菌数在3个地区中最少(P<0.05)。厂房菌种类别比较结果显示:北京AIT中心的优势细菌为微球菌属、葡萄球菌属等,优势真菌为白假丝酵母菌;天津AIT中心的优势细菌为芽胞杆菌属,优势真菌为曲霉属和青霉属等;酒泉AIT中心的优势细菌为芽胞杆菌属、葡萄球菌属等,优势真菌为曲霉属和球毛壳霉等。本研究表明:各AIT中心的空气微生物分布具有明显的地区差异,这不仅与不同AIT中心所在地的气候特征和厂房设计有关,还受到人员管理因素的影响。文章最后为我国空间站AIT中心的微生物控制设计提出了一些建议。  相似文献   

10.
Thermal springs in evaporitic environments provide a unique biological laboratory in which to study natural selection and evolutionary diversification. These isolated systems may be an analogue for conditions in early Earth or Mars history. One modern example of such a system can be found in the Chihuahuan Desert of north-central Mexico. The Cuatro Cienegas basin hosts a series of thermal springs that form a complex of aquatic ecosystems under a range of environmental conditions. Using landmark-based morphometric techniques, we have quantified an unusually high level of morphological variability in the endemic gastropod Mexipyrgus from Cuatro Cienegas. The differentiation is seen both within and between hydrological systems. Our results suggest that this type of environmental system is capable of producing and maintaining a high level of morphological diversity on small spatial scales, and thus should be a target for future astrobiological research.  相似文献   

11.
Gorbushina A 《Astrobiology》2003,3(3):543-554
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.  相似文献   

12.
Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a "Precambrian Park" for astrobiology. Key Words: Microbial mats-Stromatolites-Early Earth-Extremophilic microorganisms-Microbial ecology. Astrobiology 12, 641-647.  相似文献   

13.
During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware.

Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s).

Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems.

For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach.

Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.  相似文献   


14.
Life and living systems need several important factors to establish themselves and to have a continued tradition. In this article the nature of the borderline situation for microbial life under heavy salt stress is analyzed and discussed using the example of biofilms and microbial mats of sabkha systems of the Red Sea. Important factors ruling such environments are described, and include the following: (1) Microbial life is better suited for survival in extremely changing and only sporadically water-supplied environments than are larger organisms (including humans). (2) Microbial life shows extremely poikilophilic adaptation patterns to conditions that deviate significantly from conditions normal for life processes on Earth today. (3) Microbial life adapts itself to such extremely changing and only ephemerally supportive conditions by the capacity of extreme changes (a) in morphology (pleomorphy), (b) in metabolic patterns (poikilotrophy), (c) in survival strategies (poikilophily), and (d) by trapping and enclosing all necessary sources of energy matter in an inwardly oriented diffusive cycle. All this is achieved without any serious attempt at escaping from the extreme and extremely changing conditions. Furthermore, these salt swamp systems are geophysiological generators of energy and material reservoirs recycled over a geological time scale. Neither energy nor material is wasted for propagation by spore formation. This capacity is summarized as poikilophilic and poikilotroph behavior of biofilm or microbial mat communities in salt and irradiationstressed environmental conditions of the sabkha or salt desert type. We use mainly cyanobacteria as an example, although other bacteria and even eukaryotic fungi may exhibit the same potential of living and surviving under conditions usually not suitable for life on Earth. It may, however, be postulated that such poikilophilic organisms are the true candidates for life support and survival under conditions never recorded on Planet Earth. Mars and some planets of other suns may be good candidates to search for life under conditions normally not thought to be favorable for the maintenance of life.  相似文献   

15.
This paper studies the autonomous navigation method for a group of satellites based on relative position measurements, which can be obtained by using inter-satellite links for measuring relative range and navigation star sensors for measuring relative bearing. For the satellites that are far from each other, it may be difficult to obtain relative bearing measurement due to poor visibility. To address this difficulty, this paper proposes a novel scheme, where three satellites, whose relative ranges are rather small such that the relative bearings can be observed, are used as beacons for the navigation of the other satellites that are invisible. The feasibility of the proposed navigation scheme is analyzed by using the Cramer-Rao lower bound (CRLB), with the consideration of the availability of relative bearing measurements. In addition, the multiple model adaptive estimation (MMAE) algorithm is adopted to improve the convergence speed of the estimator in the presence of large initial errors. Simulation results illustrate the high performance of the proposed scheme.  相似文献   

16.
Bailey J 《Astrobiology》2007,7(2):320-332
Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.  相似文献   

17.
This paper is about a pilot application of narrative psychological content analysis in the psychological status monitoring of Crew 71 of a space analog simulation environment, the Mars Desert Research Station (MDRS). Both the method and its theoretical framework, Scientific Narrative Psychology, are original developments by Hungarian psychologists [5] (László, 2008). The software was NooJ, a multilingual linguistic development environment [11] (Silberztein, 2008). Three measures were conceptualized and assessed: emotional status, team spirit and subjective physical comfort. The results showed the patterns of these three measures on a daily basis at group level, and allowed for detecting individual differences as well. The method is adaptable to languages involved in space psychology, e.g. Russian, French and German in addition to English.  相似文献   

18.
We report on the use of a portable instrument for microbial detection in the Mojave Desert soil and the potential for its use on Mars. The instrument is based on native fluorescence and employs four excitation wavelengths combined with four emission wavelengths. A soil dilution series in which known numbers of Bacillus subtilis spores were added to soil was used to determine the sensitivity of the instrument. We found that the fluorescence of the biological and organic components of the desert soil samples studied can be as strong as the fluorescence of the mineral component of these soils. Using the calibration derived from B. subtilis spores, we estimated that microbial content at our primary sampling site was 10(7) bacteria per gram of soil, a level confirmed by phospholipid fatty acid analysis. At a nearby site, but in a slightly different geological setting, we tested the instrument's ability to map out microbial concentrations in situ. Over a ~50 m diameter circle, soil microbial concentrations determined with the B. subtilis calibration indicate that the concentrations of microorganisms detected varies from 10(4) to 10(7) cells per gram of soil. We conclude that fluorescence is a promising method for detecting soil microbes in noncontact applications in extreme environments on Earth and may have applications on future missions to Mars.  相似文献   

19.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.  相似文献   

20.
Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used.In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号