首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

2.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

3.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

4.
冕洞特征参数与重现型地磁暴关系的统计研究   总被引:1,自引:1,他引:0  
在提取冕洞特征参数的基础上,利用1996年到2005年8月近十年来对地磁扰动有影响的356个冕洞事例,定量分析了冕洞特征参数(包括冕洞的面积比、经纬度跨度等)与冕洞高速流特征、重现型地磁扰动特征(包括扰动大小和持续时间等)之间的相关性,研究发现,从引起地磁扰动的冕洞在整个太阳活动周的分布来看,在地磁扰动峰年中冕洞影响同样具有重要的贡献;冕洞高速流太阳风速度与地磁扰动强度之间存在较强的相关性,而高速流中太阳风速度与冕洞面积比关系不大,与冕洞亮度存在一定相关性;冕洞的经度跨度与地磁扰动持续时间存在很强的正相关性.   相似文献   

5.
In this paper we analyze the spatial distribution of galactic cosmic rays during periods of maximum solar activity of the cycles 21, 22 and 23. We have used a two dimensional model to solve the cosmic ray transport equation. This model includes all relevant physical processes: diffusion, convection, drift and shock effects on cosmic ray propagation inside the heliosphere. We focused on the study of the radial distribution of galactic cosmic rays, and compare our results with the spacecraft observations for two energies (175 MeV H and 265 MeV/n He). Although the radial intensities of galactic cosmic rays can be explained qualitatively with all three local interstellar spectra (LISs) used in this work, we applied a reduced chi-squared analysis to investigate the best LIS that could fit the data.  相似文献   

6.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   

7.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

8.
Time dependent cosmic ray modulation in the outer heliosphere is calculated and results are compared to Voyager 1 and 2 observations using a two-dimensional time-dependent cosmic ray transport model. We predict possible future 133–242 MeV proton observations along the Voyager 1 and 2 spacecraft trajectories. Recent theoretical advances in cosmic ray transport parameters are introduced in order to provide a time-dependence for the assumed transport parameters used in the model. This leads to results that are in general compatible with the spacecraft observations in the inner and outer heliosphere over multiple solar cycles. However, for the outer heliosphere, we find that the Voyager 1 and 2 spacecraft observations cannot be fitted with an identical set of parameters along both trajectories. This indicates a possible asymmetric heliosphere or a symmetric heliosphere but with different diffusion parameters in the northern and southern hemispheres, respectively. Furthermore, results indicate that Voyager 2 observations are still under the influence of solar cycle related changes because of the large modulation volume between the heliopause and spacecraft location in contrast to Voyager 1 which shows a steady increase in cosmic ray intensities.  相似文献   

9.
Cosmic ray modulation in the outer heliosphere is discussed from a modeling perspective. Emphasis is on the transport and acceleration of these particles at and beyond the solar wind termination shock in the inner heliosheath region and how this changes over a solar cycle. We will show that by using numerical models, and by comparing results to spacecraft observations, much can be learned about the dependence of cosmic ray modulation on solar cycle changes in the solar wind and heliospheric magnetic field. While the first determines the heliospheric geometry and shock structure, the latter results in a time-dependence of the transport coefficients. Depending on energy, both these effects contribute to cosmic ray intensities in the inner heliosheath changing over a solar cycle.  相似文献   

10.
11.
We present a data correction algorithm for real-time data processing for the NM64 galactic cosmic ray neutron monitor at the Royal Meteorological Institute (RMI) in Dourbes, Belgium. The correction is based on three main tests: a continuity test, tube ratios test and a derivative test. The continuity test works as a high pass filter with a threshold based on the entire recorded dataset. Additionally, it monitors whether the logging takes place at regular intervals (continuously). The ratios test identifies noisy sections and the final derivative test criterion will identify single or double spikes by testing them against the median increase of the intensities. Using these criteria, all data from the cosmic ray station at Dourbes is corrected in real time. Test results have been compared with data from verified neutron monitor stations with a similar geomagnetic cutoff rigidity.  相似文献   

12.
After entering our local astrosphere (called the heliosphere), galactic cosmic rays, as charged particles, are affected by the Sun’s turbulent magnetic field. This causes their intensities to decrease towards the inner heliosphere, a process referred to as modulation. Over the years, cosmic ray modulation has been studied extensively at Earth, utilizing both ground and space based observations. Moreover, modelling cosmic ray modulation and comparing results with observations, insight can be gained into the transport of these particles, as well as offering explanations for observed features. We review some of the most prominent cosmic ray observations made near Earth, how these observations can be modelled and what main insights are gained from this modelling approach. Furthermore, a discussion on drifts, as one of the main modulation processes, are given as well as how drift effects manifest in near Earth observations. We conclude by discussing the contemporary challenges, fuelled by observations, which are presently being investigated. A main challenge is explaining observations made during the past unusual solar minimum.  相似文献   

13.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

14.
The allowed cosmic radiation flux accessible to an earth-orbiting spacecraft is a complex function of the satellite position and the geomagnetic cutoff characteristics at each zenith and azimuth angle at each position. We have determined cosmic ray exposure factors for the galactic cosmic ray spectrum for typical shuttle altitudes and inclinations up to 50 degrees. We have utilized d world grid of trajectory-derived cutoff rigidity calculations at 400 km altitude to determine geomagnetic transmission functions that permit a simple and direct calculation of the allowed cosmic ray spectrum to a 400 km satellite orbit. If the interplanetary cosmic ray spectrum is multiplied by the orbit-averaged geomagnetic transmission function the result is the allowed cosmic ray spectrum at the spacecraft.  相似文献   

15.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

16.
Our understanding of galactic cosmic ray (GCR) modulation has advanced greatly in the last three decades. However, we still need an appropriate knowledge of the GCR intensity gradient. Numerical simulations of the transport particle equation allow interpretation of cosmic ray intensities in the heliosphere. We use the numerical solution of the GCR transport equation during solar maximum epoch to compute the radial and latitudinal gradients. Our analysis indicates that adiabatic energy loss plays an important role in the radial distribution of GCR in the inner heliosphere, while in the outer region the diffusion and convection are the relevant processes. The latitudinal gradient is small.  相似文献   

17.
The effects of changing the position of the solar wind termination shock and the position of the heliopause, and therefore the extent of the heliosheath, on the modulation of cosmic ray protons are illustrated. An improved numerical model with diffusive termination shock acceleration, a heliosheath and drifts is used. The modulation is computed in the equatorial plane and at 35 heliolatitude using recently derived diffusion coefficients applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. It was found that qualitatively the modulation results for the different heliopause positions are similar although they differ quantitatively, e.g., clearly different radial gradients are predicted for the regions beyond the termination shock compared to inside the shock. The difference between the modulation for the two solar polarity cycles are less significant at a heliolatitude of 35° than in the equatorial plane. We found that moving the termination shock from 90 to 100 AU, with the heliopause fixed at 120 AU, caused only quantitative differences so that the exact position of the TS in the outer heliosphere seems not crucially important to global modulation. Moving the heliopause outwards, to represent the modulation in the tail region of the heliosphere, causes overall decreases in the cosmic ray intensities but not linearly as a function of energy, e.g., at 1 GeV the effect is insignificant. We conclude from this modelling that the modulation of protons in the heliospheric nose and tail regions are qualitatively similar although, clear quantitative and interesting differences occur.  相似文献   

18.
A two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. This model has already been used with some success for simulation of some major features of type II shocks and white light coronal transients. In this presentation, we have studied the effects of initial magnetic topology and strength on the formation of MHD shocks. We consider the plasma beta (thermal pressure/magnetic pressure) as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfvén Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. We suggest that this model (computed self-consistently) provides the shock wave and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.  相似文献   

19.
A method of prediction of expected part of global climate change caused by cosmic ray (CR) by forecasting of galactic cosmic ray intensity time variation in near future based on solar activity data prediction and determined parameters of convection-diffusion and drift mechanisms is presented. This gave possibility to make prediction of expected part of global climate change, caused by long-term cosmic ray intensity variation. In this paper, we use the model of cosmic ray modulation in the Heliosphere, which considers a relation between long-term cosmic ray variations with parameters of the solar magnetic field. The later now can be predicted with good accuracy. By using this prediction, the expected cosmic ray variations in the near Earth space also can be estimated with a good accuracy. It is shown that there are two possibilities: (1) to predict cosmic ray intensity for 1–6 months by using a delay of long-term cosmic ray variations relatively to effects of the solar activity and (2) to predict cosmic ray intensity for the next solar cycle. For the second case, the prediction of the global solar magnetic field characteristics is crucial. For both cases, reliable long-term cosmic ray and solar activity data as well as solar magnetic field are necessary. For solar magnetic field, we used results of two magnetographs (from Stanford and Kitt Peak Observatories). The obtained forecasting of long-term cosmic ray intensity variation we use for estimation of the part of global climate change caused by cosmic ray intensity changing (influenced on global cloudiness covering).  相似文献   

20.
太阳宇宙线在电离层D层中的电离   总被引:2,自引:0,他引:2  
本文根据带电粒子对D层大气电离的理论,导出了太阳宇宙线在D层的电子产生率Q(h)的表达式,并计算了不同级别的太阳宇宙线事件、不同能谱参数下,Q(h)在极区随高度的分布。结果表明,不同级别、不同能谱的太阳宇宙线事件在极区产生的电离有显著的差别。同一级别,能谱指数γ越大,在较高的高度上电子产生率越大;能谱指数越小,在较低的高度上电子产生率越大。电子产生率的分布曲线出现明显的双峰,一个峰位于60公里左右,另一个峰位于85公里左右。前一个峰主要由太阳宇宙线中质子产生的,后一个峰主要是z≥2的重粒子成分产生的。本文所得结果明显好于Velinov等人的结果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号