共查询到20条相似文献,搜索用时 46 毫秒
1.
为了改善折叠翼仿生变形无人机变形暂态过程纵向控制性能,利用线性变参数(Linear Pa-rameter Varying,LPV)系统的模型预测控制(Model Predictive Control,MPC)方法,在线性时不变(LTI)系统MPC控制方法的基础上,运用线性变参数(LPV)系统的MPC控制,使MPC在线优... 相似文献
2.
针对无人机飞控系统功能及其复杂而又难以比较全面的描述,提出利用面向对象统一建模语言UML对飞控系统进行建模,可直观地描述飞控系统,并可以从不同角度较全面地描述飞控系统。首先简要介绍了飞控系统的原理和功能,在此基础上,利用UML例图、类图、协作图、顺序图、活动图,分别从整体、静态、动态角度描述了飞控系统。使用这种方法对飞控系统建模可应用在无人机系统仿真建模中,对无人机系统仿真建模具有积极的研究意义。 相似文献
3.
针对航空发动机线性变参数模型,基于平衡流形原理,研究了一种改进LPV建模方法.首先,根据平衡流形原理,构造涡扇发动机平衡流形参数化形式.其次,根据某型涡扇发动机非线性模型,建立基于局部线性模型的涡扇发动机准LPV模型.然后,建立基于平衡流形的航空发动机改进准LPV模型,即:利用平衡流形参数化形式,根据调度变量实时估算发动机平衡态,以更新发动机准LPV模型的参考平衡态.最后,通过对发动机从慢车状态到最大状态的阶梯加速过程进行仿真,表明改进UP模型的稳态和动态响应特性与发动机非线性模型保持很好地一致. 相似文献
4.
5.
6.
针对太阳能无人机能源系统建模的耦合性考虑不足、能量流动过程描述不全面等问题,将外部大气环境、无人机的姿态角度等不同维度下影响能源系统运行的多个因素纳入到建模过程中,先后给出了非均质大气环境模型、无人机运动模型、电机模型、减速器模型、螺旋桨模型、光伏电池模型和蓄电池模型的建立过程,并建立了各模型间的耦合关系,得到反映非均质大气环境下、动态飞行行为的太阳能无人机中能量流动的耦合模型。仿真结果表明:该模型可以完整的描述外部大气环境和无人机飞行姿态对无人机发电功率以及动力负荷功率的影响等耦合作用,适合用于仿真分析和地面半实物仿真平台的搭建。 相似文献
7.
随动系统主要用于跟踪空中飞行目标,目标的方位可以由水平方位角和高低角度确定,由于水平角和高低角随时间变化的函数往往很复杂,在求控制系统的稳态误差时,难以对目标输入函数进行拉普拉斯变换;采用一种用曲线来拟合逼近目标函数的方法,达到了很好的效果;进而根据系统精度要求可以确定控制系统的放大增益。通过对随动系统的控制和分析,建立控制系统的数学模型,得到随动系统跟随目标函数的响应曲线;随动系统要求有很好的稳定性和很高的精度,采用了一种滞后-引前的校正方法,用MATLAB仿真模拟,并进行时域和频域的综合分析,得到了理想的仿真结果。 相似文献
8.
燃料电池因其高效、无污染、噪声小等特点,被认为是未来最具有潜力的无人机(UAV)用动力源,燃料电池阴极供气系统的控制技术是决定燃料电池系统性能和可靠性的关键。针对无人机用质子交换膜燃料电池(PEMFC)阴极供气系统,首先,考虑外界温度、压力、空气密度以及雷诺数等随高度变化的参数,建立了跨高度离心空压机模型并分析了其在不同高度下的工作特性,基于无刷直流电机反电势特征构建了高速空压机驱动电机模型。其次,通过计算燃料电池阴极氧气和氮气的动态分压获取了PEMFC电堆输出电压。设计了基于分数阶PIλDμ的过氧比和阴极气压控制方法,驱动电机采用有限集模型预测控制(MPC)实现快速的转矩响应,仿真结果表明设计的控制器可在无人机跨高度运行条件下实现过氧比的快速调节,同时维持阴极气压稳定,满足燃料电池阴极供气需求。 相似文献
9.
文中通过对无人机的起飞滑跑过程,及起飞滑跑阶段的控制策略进行研究,对传统起飞滑跑性能理论计算方法的,局限性进行分析,提出一种基于改进神经网络算法的,无人机起飞滑跑性能计算方法。通过建立改进的神经网络模型,对各种环境条件下的发动机推力进行计算,依据飞行试验结果,利用单参数分析换算法,可以预测出不同环境条件下的无人机起飞滑跑性能。通过多架次飞行试验表明,基于改进神经网络算法的,无人机起飞滑跑性能计算方法精度较高,该方法与传统理论计算方法相比,更贴合工程实际应用,还可应用到无人机复杂任务环境,或新使用环境下的适应性分析中,达到降低飞行风险的目的。 相似文献
10.
11.
12.
13.
针对无人机三维在线航迹规划对算法速率、航迹最优性的需求,提出了基于改进ARA*算法的无人机在线航迹规划方法。首先,建立无人机三维航迹规划的数学模型;然后,提出了节点空间约简策略、局部启发项策略以提高算法收敛速率,并针对复杂规划环境提出了启发因子自适应递减策略。仿真结果表明,所提算法能够快速、稳定地生成首条可行航迹,并在剩余时间内不断提高航迹质量,可应用于不同类型的在线规划任务,动态地适应规划时间与航迹最优性的要求。 相似文献
14.
Ligang GONG;Qing WANG;Changhua HU;Chen LIU 《中国航空学报》2020,33(2):672-687
This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and a related altitude motion model is established.Then,the designed controller is divided into the outer part and inner part,where the outer part is devised by a combination of the back-stepping method and command filter technique so that the'explosion of complexity'problem is eliminated.Moreover,the integrator structure of the altitude motion model is exploited to simplify the back-stepping design,and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances.The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied.The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances.It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once.Finally,comparative simulations are conducted to validate improved control performance of the proposed scheme. 相似文献
15.
Yang WANG;Hongguang LI;Xinjun LI;Zhipeng WANG;Baochang ZHANG 《中国航空学报》2024,(7):375-390
With rapid development of UAV technology, research on UAV image analysis has gained attention. As the existing techniques of UAV target localization often rely on additional equipment,a method of UAV target localization based on depth estimation has been proposed. However, the unique perspective of UAVs poses challenges such as the significant field of view variations and the presence of dynamic objects in the scene. As a result, the existing methods of depth estimation and scale recovery cannot be directly applied to UAV perspectives. Additionally, there is a scarcity of depth estimation datasets tailored for UAV perspectives, which makes supervised algorithms impractical. To address these issues, an outlier filter is introduced to enhance the applicability of depth estimation networks to target localization. A frame buffer method is proposed to achieve more accurate scale recovery, so as to handle complex scene textures in UAV images. The proposed method demonstrates a 14.29% improvement over the baseline. Compared with the average recovery results from UAV perspectives, the difference is only 0.88%, approaching the performance of scale recovery using ground truth labels. Furthermore, to overcome the limited availability of traditional UAV depth datasets, a method for generating depth labels from video sequences is proposed. Compared to state-of-the-art methods, the proposed approach achieves higher accuracy in depth estimation and stands for the first attempt at target localization using image sequences. Proposed algorithm and dataset are available at https://github.com/uav-tan/uav-object-localization. 相似文献
16.
17.
The rendezvous and formation problem is a significant part for the unmanned aerial vehicle(UAV) autonomous aerial refueling(AAR) technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law(ICGL) is proposed to compute a series of state variables to get the solution of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker.The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance. 相似文献
18.
19.
飞行仿真气动力数据机器学习建模方法 总被引:1,自引:0,他引:1
基于机器学习思想,提出了一种大空域、宽速域的气动力建模方法。该方法利用飞行仿真弹道数据辨识的气动力数据,采用人工神经网络技术,实现了对高度、速度、姿态和舵偏角等多维度强非线性特性的全弹道气动力数据的高精度逼近。首先,分析了神经网络层数、隐含层神经元个数等对建模误差的影响,通过对典型弹道气动数据的神经网络建模计算,确定了较合适的神经网络层数和较优的隐层神经元个数。进而,利用飞行仿真的弹道数据辨识出沿弹道的气动力,采用神经网络建立了包含多个弹道融合的气动力模型,输出量分别为三轴气动力系数和力矩系数。最后通过气动模型输出量与原样本数据的对比,以及4条未参与训练弹道气动数据的预测,验证了该气动力建模方法具有较高的精度。建模结果表明:采用神经网络方法建立的飞行器气动力模型,对拟合多源耦合输入全弹道非线性气动力是可行的和有效的,在样本覆盖的高度、速度、姿态和控制舵偏角范围内,气动力拟合能力较强,并具有一定的外推性。该项研究可以为基于飞行试验数据的气动建模提供新的方法,并且能为飞行器气动力数据挖掘、飞行仿真和总体性能分析提供参考。 相似文献