首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moss protonemata are a valuable system for studying gravitropism because both sensing and upward curvature (oriented tip growth) take place in the same cell. We review existing evidence, especially for Ceratodon purpureus, that addresses whether the mass that functions in sensing is that of amyloplasts that sediment. Recent experiments show that gravitropism can take place in media that are denser than the apical cell. This indicates that gravity sensing relies on an intracellular mass rather than that of the entire cell and provides further support for the starch-statolith hypothesis of sensing. Possible mechanisms for how amyloplast mass functions in sensing and transduction are discussed.  相似文献   

2.
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata.  相似文献   

3.
In darkness, protonemata of Pohlia nutans (Hedw.) grew negatively gravitropically (upwards). However, not all filaments became gravitropic immediately after transfer to darkness. Some of them (~20%) for several days grew in different directions with respect to gravity. The apical cells of those protonemata predominantly contained multiple chloroplasts. The intensity of chlorophyll fluorescence rapidly decreased in the apical cells of such protonemata while starch content increased in comparison with upright growing protonemata. Light, especially in the red and blue part of the spectrum, inhibited protonemal gravitropism. Red light induced stronger inhibitory effects than blue light. Red light of 1.0 to 1.5 micromoles m-2 s-1 intensity induced bud differentiation in apical cells on almost all side branches of main protonemal filaments. Bright fluorescence of F-actin bundles in the tip of apical protonematal cells and a delicately fluorescing network enclosing plastids basal to the tip in a sedimentation zone were visualized. Bright fluorescence of actin as local patches and fine prominent axially oriented bundles was observed in cells of gametophore buds.  相似文献   

4.
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1.  相似文献   

5.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

6.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

7.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

8.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

9.
Theoretical investigations of the membrane-solution interface predict different effects of gravity on vertically and horizontally oriented planar membranes. Single channel events of gramicidin incorporated into phosphatidylserine planar bilayer membranes were measured in 0.1 M KCl solution, pH 7, at room temperature. The potential difference across the membrane was set to +/- 70 mV. The mean channel current was observed to be about 20% higher in horizontally oriented membranes compared to vertical membranes. This is in good agreement with the theoretical considerations and demonstrates that gravity does affect membrane processes by interaction with the membrane-solution interface which is a ubiquitous structure in biological systems.  相似文献   

10.
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1. convection along the surface of vertically oriented membranes and 2. surface potential variations by layer deformations at horizontally oriented membranes. Both effects should affect transport across the layer to the membrane surface and across the membrane. According to the theoretical predictions first experiments with gramicidin channels incorporated into artificial phosphatidylserine bilayer membranes show a significant difference in single channel currents in vertical and horizontal membranes. The complexity of biological membrane functions requires investigation of isolated membrane surface reactions and transport systems to study the gravisensitivity for each process separately.  相似文献   

11.
Advances in the theory and technology of artificial neural networks provide the potential for new approaches to the problems of control, identification, and diagnosis for large, complex systems. However, these approaches must be validated for specific applications before they can be exploited effectively. Because of the unique capabilities they offer, neural networks should play an important role in space exploration systems operations. After a brief introduction to neural networks is presented, some applications of neural networks to identification and control of space systems are described and discussed. They span the spectrum of relatively straightforward to rather complex applications. An explanation of how neural networks can be applied to such important tasks as fault diagnosis and accommodation is presented. Neural networks are shown to be part of the hierarchy of intelligent control where a higher order decision element monitors and supervises lower order elements for sensing and actuation.  相似文献   

12.
Moss protonemal growth direction is controlled by at least three factors, photo-, gravi- and autotropism. It is possible to experimentally separate these factors and to control selectively their morphological appearance. In darkness protonema grow negatively gravitropically, and unilateral illumination initiated positive phototropism. Red light suppressed auto- and gravitropism, blue light suppressed only gravitropism. Green light allowed both gravi- and autotropism. The effect of light on gravitropism might involve changes in starch synthesis.  相似文献   

13.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   

14.
On the edge of Don Juan Pond in the Wright Valley of Antarctica lies a mat of mineral and detritus cemented by organic matter. In spite of a CaCl2 concentration of about 33% (w/v), the mat contains Oscillatoria and other cyanobacteria, unicellular forms, colonial forms rich in carotenoids, and diatoms. Bacteria are rare; fungal filaments are not. Oscillatoria showed motility but only at temperatures <10 degrees C. Acetone extracts of the mat and nearby muds yielded visible spectra similar to those of laboratory grown O. sancta, with 50- to 70-fold molar ratio of chlorophyll a to b. Although rare, tardigrades were also found. The algal mat had enzymatic activities characteristic of peroxidase, catalase, dehydrogenase, and amylase. Cellulose, chitin, protein, lipid and ATP were present. Previously, algae in the Wright Valley have been described in melt water, not in the brine itself. Wright Valley has been used as a near sterile Martian model. It obviously contains an array of hardy terrestrial organisms.  相似文献   

15.
Gravity may influence different aspects of plant activity. The present report deals with two questions: gravity as an ecological factor determining spatial orientation of plant growth; and second, a possible requirement for gravity in the process of normal growth, morphogenesis and generative development of plants.  相似文献   

16.
To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro-elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems.  相似文献   

17.
Quantitative and qualitative aspects of collagen synthesis under microgravity, normal gravity and hypergravity conditions were investigated during the spacelab D-2 mission by incubating human fibroblast cultures with [3H]-proline for 0, 4, 7, 10 and 20 hours. Quantitative analysis revealed an increase of collagen synthesis under microgravity conditions, being 40% higher than 1g controls. Hypergravity samples at 1.44g, 6.6g and 10g showed a decrease in collagen synthesis with increasing g, being down to about 15% at 10g. The relative proportion of collagen from total protein synthesized, the secretion of collagen by the cells, proline hydroxylation of individual collagen alpha-chains and the relative proportions of collagens I, III and V synthesized were not affected at any of the applied conditions.  相似文献   

18.
Based on an advanced numerical model for excited hydroxyl (OH*) we simulate the effects of gravity waves (GWs) on the OH*-layer in the upper mesosphere. The OH* model takes into account (1) production by the reaction of atomic hydrogen (H) with ozone (O3), (2) deactivation by atomic oxygen (O), molecular oxygen (O2), and molecular nitrogen (N2), (3) spontaneous emission, and (4) loss due to chemical reaction with O. This OH* model is part of a chemistry-transport model (CTM) which is driven by the high-resolution dynamics from the KMCM (Kühlungsborn Mechanistic general Circulation Model) which simulates mid-frequency GWs and their effects on the mean flow in the MLT explicitly. We find that the maximum number density and the height of the OH*-layer peak are strongly determined by the distribution of atomic oxygen and by the temperature. As a results, there are two ways how GWs influence the OH*-layer: (1) through the instantaneous modulation by O and T on short time scales (a few hours), and (2) through vertical mixing of O (days to weeks). The instantaneous variations of the OH*-layer peak altitude due to GWs amount to 5–10 km. Such variations would introduce significant biases in the GW parameters derived from airglow when assuming a constant pressure level of the emission height. Performing a sensitivity experiment we find that on average, the vertical mixing by GWs moves the OH*-layer down by ~2 to 7 km and increases its number density by more than 50%. This effect is strongest at middle and high latitudes during winter where secondary GWs generated in the stratopause region account for large GW amplitudes.  相似文献   

19.
Seedling growth and development on space shuttle.   总被引:1,自引:0,他引:1  
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.  相似文献   

20.
The understanding of the radiobiological action of heavy ions requires the knowledge of the dependence of the inactivation probability on the distance between the particle's trajectory and the biological test organism (the impact parameter). Spores of Bacillus subtilis with a cytoplasmic core of about 0.22 micrometer cross section are suitable test objects for the study of this radial inactivation probability in its microscopic details. The spores are irradiated at low fluences of some 10(6) ions/cm2 with very heavy ions at different specific energies up to 10 MeV per atomic mass unit u while in fixed contact with visual nuclear track detectors. The methods are described by which the biological response of individual cells can be evaluated and the impact parameter be determined with an accuracy typically better than 0.2 micrometer. The results demonstrate that the common characteristics of inactivation, e.g., an effective range of inactivation extending to at least 3 micrometers, a nonmonotonic dependence of the inactivation probabilities on the radial distance, and the fact that the inactivation probability even for direct central hits on the cytoplasmic core is substantially below one, are nearly independent of the particle energy and type. The results are incompatible with the assumption that the radiobiological effectiveness can be attributed to the dose of secondary electrons as currently understood. They also demonstrate that the widely held notion of an "overkill" at low impact parameters does not apply for the spores even with the most densely ionizing ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号