首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Different types of classification techniques are available in the literature for the classification of Synthetic Aperture Radar (SAR) data into various land cover classes. Various SAR images are available for land cover classification such as ALOS PALSAR (PALSAR-1, PALSAR-2), RADARSAT and ENVISAT. In this paper, we have attempted to explore probability distribution function (pdf) based land cover classification using PALSAR-2 data. Over 20 different statistical distribution functions are analyzed for different classes based on statistical parameters. Probability distribution functions are selected based on Chi-squared goodness of fit test for each individual class. A decision tree based classifier is developed for classification based on the selected pdf functions and its statistical parameters. The proposed classification approach has an accuracy of 83.93%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号