首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
离心压气机流场的精细测量对深入理解内部流动特征极其重要。传统的接触式流场测量技术存在空间分辨率低、堵塞效应严重、测量位置单一等缺陷,已经不能满足现代先进离心压气机的测量需求。激光多普勒测速技术(Laser Doppler Velocimeter,LDV)和粒子图像测速技术(Particle Image Velocimeter,PIV)作为两种典型的非接触式测量技术,具有测量精度高、适用范围广、非接触测量等特点,在离心压气机内部流场测量方面展现出巨大潜力。通过梳理国内外LDV和PIV测速技术测量离心压气机内部流动应用现状,介绍了LDV和PIV测速技术在离心压气机内流场测试方面的应用进展,着眼于试验方案、试验细节和技术难点,结合测量技术的未来发展趋势,从实际应用角度出发,对LDV和PIV测速技术在离心压气机内流场测量方面的应用进行了总结和展望。  相似文献   

2.
首先,针对典型城区模型,在黏性非结构直角网格上求解了三维Navier Stokes(N-S)方程,并通过数值模拟计算了典型城区环境流场。其次,采用粒子图像测速(Particle image velocimetry,PIV)技术开展了城区流场测量试验研究。最后,通过对比试验与计算结果分析了典型城区流场特性。  相似文献   

3.
高速复杂流动PIV技术研究实践与挑战   总被引:1,自引:3,他引:1       下载免费PDF全文
粒子图像测速技术目前已经发展成为实验流体力学领域应用最广泛的非接触激光测试方法之一,为认知复杂流动机理提供直观的流场信息.本文基于超声速流场PIV技术研究实践,针对示踪粒子布撒器设计、粒子松弛特性模型构建、激波流场测试分析、超声速平板湍流边界层结构分析等方面具体问题的研究和认识,从理论、定量化的角度深入分析了应用于超声速流场PIV技术现阶段依然存在的问题.从应用于超声速流场PIV技术的原理出发,针对高速复杂流场的PIV测试现状,总结了应用于超声速流场PIV技术发展过程中的光学部件、示踪粒子及布撒系统所遇到的一系列挑战,以及国内外利用PIV技术在高速复杂流场研究中所取得的成就,针对PIV技术能否适用于高超声速流场的测量做了系统化地探索.并根据实践经验提出了应用于超声速流场PIV技术未来的发展方向:通用的精确的PIV方法不存在,必须从具体研究的流动机理角度改造相应的PIV测试手段.  相似文献   

4.
一种综述粒子图像测速(Particle Image Velocimetry)的非接触、瞬时、动态、全流场的和本质上是直接的速度场测量技术,成为当今最实用和非常有潜力的流体力学全流场观测(Full Flow Field Observation & Measurement)技术.回顾和展望PIV(包括DPIV,SPIV,HPIV等)及其应用的进展和前景.面临新世纪,PIV技术有望最终攻克一个容积的三维速度场时间历程(3Dt-3C)的观测和推动流体力学进入十分活跃的新时期.  相似文献   

5.
探讨利用粒子图像测速(PIV)技术,实验研究冷却介质在层板内部流动特性的可行性.实验在满足相似性原理的前提下,用放大的有机玻璃模型,分区域再现了复杂结构内几个重要截面的二维流场.实验在雷诺数4.1×104下进行,从测量所得流体速度矢量图、等高线图及涡量图来看,虽然现有的PIV技术在测量精度上仍有欠缺,但是几个典型截面上所得到的实验结果是合理的,基本与本文第二部分展示的数值模拟结果相符合.因此利用PIV测速技术,验证层板内流数学模型和数值方法是有意义的.  相似文献   

6.
层析粒子图像测速技术(Tomographic Particle Image Velocimetry,Tomo-PIV)是将PIV技术和计算机断层诊断技术(CT)相结合的一种瞬时三维流场速度测量技术,能够定量获取流场的三维结构。通过对该技术的研究,实现了其在亚跨超声速风洞的应用,并进行了超临界翼型小肋减阻的试验验证。基于中国航天空气动力技术研究院FD-12亚跨超声速风洞,设计了体光源和相机等硬件设备的布局方案,解决了示踪粒子的均匀播撒问题,测量了Ma=0.6条件下的自由来流流场,并与PIV测试结果进行对比,两者数据吻合较好,验证了Tomo-PIV的测量精度。针对超临界翼型OAT15a,测量了翼型表面分别贴附光滑薄膜和顺流向对称V形小肋薄膜后翼型尾缘后方的三维速度场。对比发现,贴附小肋薄膜后尾缘后方流场的马赫数增大,说明小肋能够减小翼面摩擦阻力,具有一定的减阻效果。  相似文献   

7.
PIV(粒子图像测速)技术在拖曳水池中的应用面临诸多困难。与水池岸基式PIV相比,随车式PIV具有设置灵活、连续采集的优点。介绍了中国船舶科学研究中心(CSSRC)拖曳水池随车式PIV技术的特点与功能及其发展。介绍该系统的三个应用:高速水面船模支架周围流动观测;全附体下带与不带前置导叶、螺旋桨的水下回转体模型尾部区域流场测量及两种不同艉附体与主体连接形式的水下回转体尾部流场的测量。展示了该系统的发展历程及其在船舶流场研究中的作用与应用前景。  相似文献   

8.
超声速光学头罩流场的PIV研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在马赫数Ma=3. 8超声速风洞中.采用PIV(Particle Image Velocimetry,粒子图像测速)技术测量了超声速光学头罩流场的速度分布.PIV技术应用于超声速流场时,对系统的硬件配备、示踪粒子的跟随性以及PIV算法的精度有很高的要求.本文PIV系统选用高精度的同步控制器和高能量激光器;以纳米级粒径的粒子作为示踪粒子,通过斜激波响应实验分析了其在超声速流场中的跟随性;并采用多种高精度速度场算法对粒子图像进行处理.实验结果表明,示踪粒子在超声速流场中有很好的跟随性,采用的高精度速度场算法能够很好地反映超声速光学头罩流场的速度分布.  相似文献   

9.
水流场PIV测试系统示踪粒子特性研究   总被引:12,自引:0,他引:12  
粒子图像测速技术(PIV)是一种新的流场测量技术,通过对流场中的示踪粒子进行多次曝光成像,获得具有相关性的示踪粒子图像,利用软件对粒子图像进行处理后可得到被测流场的信息.水流场PIV测量利用合适的示踪粒子运动来表征流场状况,示踪粒子的特性对PIV最终测量结果影响很大.讨论了密度、直径、表面反射率等示踪粒子特性对系统实验测量的影响,并特别针对水流场斜入射离轴PIV测试,选择合适的特性参数设计研制了一种简单实用的水流场示踪粒子.通过在直径为100~200μm的聚苯乙烯微球上利用化学方法进行表面镀银,使示踪粒子具有高的光散射特性,实验结果表明这种微粒非常适合于水流场示踪.  相似文献   

10.
利用实验手段研究了超声速冲击射流在屏蔽罩或微射流控制下的流场和声学特性.远场噪声测量结果表明,对于超声速射流利用微射流或者屏蔽罩方法,不仅可以明显地消除冲击单音,而且还可以降低宽频噪声.为了理解这两种降噪控制方法的物理机理,利用粒子图像测速技术(PIV)检测了有无控制方法时的流场情况.PIV结果显示,对于超声速冲击射流当有屏蔽罩或微射流时,流场中的大尺度结构明显地减少了.说明这两种方法都能削弱超声速流场中反馈环的形成,因而降低了超声速冲击射流的不稳定性.  相似文献   

11.
作为一种新兴的体三维粒子图像测速技术,光场单相机三维粒子图像测速技术(Single-Camera Light-Field Particle Image Velocimetry,LF-PIV)能够仅用单个相机获得三维速度场,其结果已在许多复杂三维流动测量中得到验证。LF-PIV的优势主要在于其紧凑简便的硬件设备以及对光学窗口较宽松的要求。应用LF-PIV技术对一个自相似的逆压湍流边界层(Adverse Pressure Gradient Turbulent Boundary Layer,APG-TBL)进行测量,该实验在澳大利亚莫纳什大学(Monash University)航空航天与燃烧湍流研究实验室(Laboratory for Turbulence Research in Aerospace and Combustion,LTRAC)水洞中完成。实验对远、近壁面测量所得到的各600组瞬态三维流场数据进行分析验证,并与相同工况下的2D-PIV实验结果对比,证明基于DRT-MART重构技术的LF-PIV能够进行基本的湍流边界层测量。  相似文献   

12.
通过粒子图像测速仪(Particle image velocimetry,PIV)测量和定常计算流体力学(Computational fluid dynamics,CFD)数值模拟相结合的方法,对某三维旋转水平轴风力机模型的流场展开研究。在风洞开口实验段,来流风速为8m/s,针对不同尖速比(λ=4,8)利用PIV技术对风力机叶片的瞬时速度场进行测试。通过定常CFD数值模拟,获得了风力机叶片在相应工况下的流场细节。在8m/s来流风速下,当尖速比大于7.4时,试验测得的风轮扭矩和风能利用率与数值模拟结果趋于一致。尖速比小于7.4时,试验测得的扭矩值低于计算值,其风能利用效率也较低。通过速度矢量分布可以看出,在λ=4时,PIV测得靠近叶根的两个截面S1,S2在叶背有明显的流动分离,CFD结果中仅在S1截面叶背存在流动分离,S2截面叶背存在低速区。在λ=9.8时,PIV和CFD结果均显示叶片绕流流场没有流动分离。尝试采用Gamma Theta转捩模型进行了数值模拟,在考虑了层流影响后,计算所得风轮扭矩更加接近试验值。  相似文献   

13.
斜出口合成射流控制机翼分离流实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用倾斜出口合成射流激励器对NACA633-421三维直机翼进行分离流主动流动控制,天平测力结果表明合成射流可以有效地控制机翼流动分离,提升最大升力系数10.4%,推迟失速迎角4°。运用边界层测试技术及粒子图像测速系统(PIV)对合成射流分离流控制机制进行研究分析,结果表明,控制后边界层速度型变得“饱满”,形状因子减小,其底层能量增加,抵抗逆压梯度能力增强。瞬态及时均化PIV测试流场图进一步证明合成射流向主流进行动量注入及掺混后,主流附着机翼表面,翼面附近流体湍流动能和雷诺剪切应力增加,分离点向下游推迟,流动分离得到抑制。  相似文献   

14.
圆柱尾流场的 Tomo-PIV 测量   总被引:1,自引:1,他引:1       下载免费PDF全文
层析粒子图像测速(Tomo-PIV)是一种先进的光学测量技术,能够定量获取三维体视流场结构,可作为诸如湍流、多涡系干扰等三维复杂流场的有效测量手段。为了实现该技术在风洞模型测量中的应用,研究了工程应用和数据处理方法。在中航工业气动院 FL-5风洞,选取12mm 直径的圆柱体作为试验模型,应用 Tomo-PIV 技术测量了圆柱三维尾流场,通过解决体光源引入、示踪粒子投放和现场标定等关键技术以及对数据处理方法的研究,成功获得了圆柱体后方典型的三维卡门涡流场。测量区域约95mm×70mm×8.5mm,粒子图像分辨率达到20 pixels/mm,包含数万个速度矢量数据,实现了 Tomo-PIV 的风洞试验验证。  相似文献   

15.
通过改变进出口压比,对马赫数2.7的二维对称拉瓦尔喷管流动进行了试验研究,给出了超声速喷管起动过程中的激波结构演化特征。在试验过程中,固定喷管喉道出口面积比,改变喷管上下游压比,使喷管起动激波从喉道发展到喷管出口处,逐渐过渡到设计工况。在起动激波向下游发展的过程中,喷管内流动经历了教科书上给出的理论过程:喉道正激波、扩张段内正激波、喷管出口马赫反射、喷管出口规则反射、设计工况等;但由于附面层的存在,每一个过程与无粘情况下的激波示意图都有所不同。比如,试验中捕捉到的激波串在向下游的移动过程中,出现的由λ型激波向Х型激波的转变,以及激波串非对称现象的出现等。基于纹影和剪切敏感液晶摩阻显示技术获得了起动激波串的首道激波的三维特征。  相似文献   

16.
应用PIV技术研究"零质量"射流的非定常流场特性   总被引:13,自引:0,他引:13  
首次采用PIV瞬态流场测试技术对“零质量”射流激振器近出口处附近的非定常流场进行了定量测量,应用相位锁定采样技术,测到了激励周期内不同相位时射流出口的瞬态流场,由200幅瞬态流场图像的平均得到了射流流场的平均流动特性。通过对射流出口涡环的产生、发展及运动特性的分析,认识到涡环之间相互作用是形成“零质量”射流的流动机理。  相似文献   

17.
示踪粒子的随流能力是 PIV 技术在高速流动中应用的关键点之一。在上海交通大学变马赫数高速风洞中开展了 PIV 实验研究,重点提出一种评价示踪粒子随流能力的松弛特性分析模型。在马赫数4条件下尖锥、尖劈等模型 PIV 实验研究中,可以准确分析粒子的松弛特性,粒径分析结果与实验吻合较好,并验证了高速流动 PIV的测试精度和示踪粒子布撒能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号