首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
We have carried out a numerical investigation of the coupled gravitational and non-gravitational perturbations acting on Earth satellite orbits in an extensive grid, covering the whole circumterrestrial space, using an appropriately modified version of the SWIFT symplectic integrator, which is suitable for long-term (120?years) integrations of the non-averaged equations of motion. Hence, we characterize the long-term dynamics and the phase-space structure of the Earth-orbiter environment, starting from low altitudes (400?km) and going up to the GEO region and beyond. This investigation was done in the framework of the EC-funded “ReDSHIFT” project, with the purpose of enabling the definition of passive debris removal strategies, based on the use of physical mechanisms inherent in the complex dynamics of the problem (i.e., resonances). Accordingly, the complicated interactions among resonances, generated by different perturbing forces (i.e., lunisolar gravity, solar radiation pressure, tesseral harmonics in the geopotential) are accurately depicted in our results, where we can identify the regions of phase space where the motion is regular and long-term stable and regions for which eccentricity growth and even instability due to chaotic behavior can emerge. The results are presented in an “atlas” of dynamical stability maps for different orbital zones, with a particular focus on the (drag-free) range of semimajor axes, where the perturbing effects of the Earth’s oblateness and lunisolar gravity are of comparable order. In some regions, the overlapping of the predominant lunisolar secular and semi-secular resonances furnish a number of interesting disposal hatches at moderate to low eccentricity orbits. All computations were repeated for an increased area-to-mass ratio, simulating the case of a satellite equipped with an on-board, area-augmenting device. We find that this would generally promote the deorbiting process, particularly at the transition region between LEO and MEO. Although direct reentry from very low eccentricities is very unlikely in most cases of interest, we find that a modest “delta-v” (ΔV) budget would be enough for satellites to be steered into a relatively short-lived resonance and achieve reentry into the Earth’s atmosphere within reasonable timescales (50?years).  相似文献   

2.
The classical Laplace plane is a frozen orbit, or equilibrium solution for the averaged dynamics arising from Earth oblateness and lunisolar gravitational perturbations. The pole of the orbital plane of uncontrolled GEO satellites regress around the pole of the Laplace plane at nearly constant inclination and rate. In accordance with Friesen et al. (1993), we show how this stable plane can be used as a robust long-term disposal orbit. The current graveyard regions for end-of-life retirement of GEO payloads, which is several hundred kilometers above GEO depending on the spacecraft characteristics, cannot contain the newly discovered high area-to-mass ratio debris population. Such objects are highly susceptible to the effects of solar radiation pressure exhibiting dramatic variations in eccentricity and inclination over short periods of time. The Laplace plane graveyard, on the contrary, would trap this debris and would not allow these objects to rain down through GEO. Since placing a satellite in this inclined orbit can be expensive, we discuss some alternative disposal schemes that have acceptable cost-to-benefit ratios.  相似文献   

3.
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites.  相似文献   

4.
Based on the orbital resonance model, we study the two-dimensional phase plane structure of the motion of space debris orbiting the geosynchronous ring under the combined effects of the tesseral harmonics J22, J31 and J33 of the Earth’s gravitational field. We present the main characteristic parameters of the two-dimensional phase plane structure. We also analyze the stability of the two-dimensional phase plane structure with numerical method. Our main findings indicate that the combined effects of the tesseral harmonics J22, J31 and J33 fully determine the two-dimensional phase plane structure of the space debris, and it remains robust under the effect of the Earth’s actual gravitational field, the luni-solar perturbations and the solar radiation pressure with the normal area-to-mass ratios.  相似文献   

5.
This paper aims at investigating the stability over 150 years of a very large number of trajectories in the Medium Earth Orbit (MEO) region, near the orbits devoted to radionavigation such as the Global Navigation Satellite Systems (GNSS like GPS, Glonass, Galileo, COMPASS).  相似文献   

6.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   

7.
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号