首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods are discussed for establishing the optical identification of X ray sources in the medium and deep X-ray surveys of the Einstein Observatory. Of the 63 X-ray sources with a statistical significance of 5 in the medium survey (Maccacaro et al. 1981), optical identification work is summarized for 51, of which identifications have been made with 30 active galactic nuclei. The optical properties of some of these X-ray selected objects are briefly discussed.The Einstein deep survey of Pavo (Griffiths et al. 1981) is used to illustrate the problems and methods used for securing optical identifications for X-ray sources in the deep survey fields. Identifications have been made with 4 QSOs at the bright end of the optical candidate distribution (together with 3 G stars) and it is shown that a further 7 fainter objects are also likely to be QSOs.  相似文献   

2.
New ultraviolet (1300 A, 3400 A),HST FOC observations have been used to derive the UV color-magnitude diagram (CMD) of R136, with the main scientific goal of studying the upper end of the stellar mass function at ultraviolet wavelengths where the color degeneracy encountered in visual CMDs is less severe. The CMD has been compared to a set of theoretical isochrones, which have been computed using the latest generation of evolutionary models and model atmospheres for early type stars. Wolf-Rayet stars are included. Comparison of theTheoretical andobserved CMD suggests that there are no stars brighter than M130–11. We use the observed main sequence turn-off and the known spectroscopic properties of the stellar population to derive constraints on the most probable age of R136. The presence of WNL stars and the lack of red supergiants suggests a most likely age of 3±1 Myr. A theoretical isochrone of 3±1 Myr is consistent with the observed stellar content of R136 if the most massive stars have initial masses around 50 M.Bases on Observations with the NASA/ESA Hubble Space Telescope, obtained at the STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555.Astrophysics Division, Space Science Department, ESA  相似文献   

3.
From analysis of the photometric ellipticity effect in seven well-understood detached close binary systems, empirical values of the exponent of gravity-darkening have been practically deduced for eleven main-sequence components of spectral types A, F and G which should cover the range of structural change (from radiative to convective) in stellar atmospheres. The result indicate that values of the exponent diminish gradually with decreasing effective temperatures from 1.0 for radiative atmospheres with T > 8500 K to = 0.2 0.3 for convective atmospheres with T < 6500 K, in spite of some uncertainty in the reflection correction process.  相似文献   

4.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

5.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

6.
The feasibility of observation of EUV sources is assessed. Many stars have been detected in the EUV range ( 100–1000); line fluxes from others can be predicted. Selected astrophysical problems are reviewed that can benefit from EUV spectroscopy. Included among them are the physics and dynamics of stellar coronae, confirmation of nuclear surface burning on cataclysmic variables, evolutionary properties of white dwarfs, the helium abundance in the interstellar medium, and spectroscopic signatures of neutrino oscillations.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

7.
Measurements of the shape of the ultraviolet spectrum from B stars are compared with the theoretical spectra predicted from a homogeneous series of eight model atmospheres which are known to be close to a state of radiative equilibrium and to give a good representation of the ordinarily observed spectral region. The broad-band photometer measurements of Byram, Chubb, and Friedman in the region 1314 indicate that the stars become brighter in the ultraviolet as their temperature increases. The theoretical spectra reproduce this trend. However, the theoretical spectra are about three times as bright at 1314 relative to their brightness at 5560 as is observed.The spectral observations at 50Å resolution of Stecher and Milligan of six absorption-line stars are compared in detail with theoretical spectra. The observed shape of the spectrum is reproduced well by the models from 2600 to longer wavelengths. At wavelengths shorter than 2600 Å, the observed fluxes from B stars are less than the predicted fluxes. At 2000 the deficiency is between a factor two and a factor four. The spectrum of Canis Majoris is observed to have a different shape from that found for four other early-type stars. In the case of Canis Majoris the deficiency at 2000 is about a factor 13.The proper manner in which to compare theory and observation is discussed and some astrophysical terminology is explained. Theoretical fluxes, , are given in Table 1 for eight early B type model atmospheres at wavelengths between the Lyman limit and 6251. These fluxes have been computed without consideration of the opacity due to line blanketing. It is shown that line blanketing can probably account for the differences noted between predicted and observed ultra-violet spectra of B stars. It is not necessary at present to invoke unusual sources of opacity in the stellar atmosphere or in the space between the star and the earth in order to explain the observations. Spectra of B stars in the 2000 region at sufficient resolution to show the line spectrum would clarify the problem.  相似文献   

8.
In this review, current state of knowledge of high resolution observations at decameter wavelengths of the quiet Sun, the slowly varying component (SVC), type I to V bursts and noise storms is summarized. These observations have been interpreted to yield important physical parameters of the solar corona and the dynamical processes around 2R from the photosphere where transition from closed to open field lines takes places and the solar wind builds up. The decametric noise bursts have been classified into (i) BF type bursts which show variation of intensity with frequency and time and (ii) decametric type III bursts. The angular sizes of noise storm sources taking into account refraction and scattering effects are discussed. An attempt has been made to give phenomenology of all the known varieties of decametric bursts in this review. Available polarization information of decametric continuum and bursts has been summarized. Recent simultaneous satellite and ground-based observations of decametric solar bursts show that their intensities are deeply modulated by scintillations in the Earth's ionosphere. Salient features of various models and theories of the metric and decametric noise storms proposed so far are examined and a more satisfactory model is suggested which explains the BF type bursts as well as conventional noise storm bursts at decametric wavelengths invoking induced scattering process for 1 t conversion. Some suggestions for further solar decametric studies from the ground-based and satellite-borne experiments have been made.  相似文献   

9.
A new X-ray image of the galactic plane has been produced using the 45 arcmin square field of view of the Medium Energy Instrument on EXOSAT. This image shows a total of 64 sources including 18 new ones which include the first observation of persistent emission from the globular cluster bursters Terzan 1 and Terzan 5. The most important discovery from this image is a 2° wide ridge of diffuse emission symmetrical about the plane and extending from the galactic centre to 1=±40°. The spectrum of this emission appears to be hard ( 1.2) with no significant absorption.  相似文献   

10.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

11.
I Present the results of ground-based and Hubble Space Telescope photometry and spectroscopy of the stars in the central region (roughly 7×7 arcmin) of 30 Doradus in the Large Magellanic Cloud (LMC). Using photometric data for over 2400 stars (complete toV18 mag), and spectroscopic observations of over 150 stars in the region, the best estimate of the initial mass function (IMF) yields a slope of =–1.5±0.2 for masses > 12M, where the Salpeter slope is =–1.35. I compare these results to other measurements of the IMF for OB associations in the Magellanic Clouds.  相似文献   

12.
Energy coupling between the solar wind and the magnetosphere   总被引:13,自引:0,他引:13  
This paper describes in detail how we are led to the first approximation expression for the solar wind-magnetosphere energy coupling function , which correlates well with the total energy consumption rate U T of the magnetosphere. It is shown that is the primary factor which controls the time development of magnetospheric substorms and storms. The finding of this particular expression indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere constitute a dynamo. In fact, the power P generated by the dynamo can be identified as by using a dimensional analysis. Furthermore, the finding of indicates that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. Therefore, the finding of and its implications have considerably advanced and improved our understanding of magnetospheric processes. The finding of has also led us to a few specific future problems in understanding relationships between solar activity and magnetospheric disturbances, such as a study of distortion of the solar current disk and the accompanying changes of . It is also pointed out that one of the first tasks in the energy coupling study is an improvement of the total energy consumption rate U T of the magnetosphere. Specific steps to be taken in this study are suggested.  相似文献   

13.
Temporal and spectral characteristics of solar hard X-ray bursts are briefly reviewed. The merits of non-thermal and thermal flare models are discussed. The validity of these models may be checked by future measurements of X-ray polarization. Finally, some important results of recent satellite experiments are described providing information on the spatial distribution of hard X-ray sources: the multi-spacecraft observation of X-ray bursts and the imaging of X-ray sources by means of the HXIS instrument.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

14.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

15.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

16.
Observational evidence suggests that most — if not all — binary X-ray sources are neutron stars. The evolutionary status and possible formation mechanisms of the type I (massive) and type II (low-mass) X-ray binaries are discussed. The difference between the standard massive X-ray binaries and the Be/X-ray binaries is ascribed to a somewhat different evolutionary history and status, and possible reasons for the existence of short- and long — period X-ray pulsars are discussed. Type II X-ray sources in globular clusters were most probably formed by capture processes; their formation rate inferred from the observations indicates that only a small fraction ( 1 to 10 percent) of the originally formed neutron stars have remained in their clusters. Type II sources in the galactic bulge may also have formed from cataclysmic binaries in which a white dwarf was driven over the Chandrasekhar limit by accretion.  相似文献   

17.
Using the Hubble Space Telescope (HST) and the Faint Object Spectrograph (FOS) high signal to noise spectrograms were obtained for 15 OB stars in the Magellanic Clouds***, three of which are of spectral type O3. The data cover the spectral region from 1150 A – 2300 A with a resolution of /1 A. One O8.5 supergiant, OB78#231, in M31is also included in this work. These data are a substantial improvement on previous high resolution IUE observations in the Magellanic Clouds (Walborn et al. 1985 and references therein) because of the smaller aperture and the much better signal to noise ratio, while no high resolution UV spectra of O stars in M31 have been obtained before. In this paper we discuss various morphological aspects of the spectra, concerning metallicity and the stellar winds, compared to galactic analogues.  相似文献   

18.
Information can be obtained from energetic particle measurements through the chemical composition, energy spectrum, directional anisotropy, temporal and spatial intensity variations. This is equivalent to saying that there is a distribution functionf k(p,r,t) wherek corresponds to thekth particle species of momentump at positionr and timet.Particle transport is described by the Boltzmann equation, and because the densities are generally low in the case of cosmic rays or energetic solar flare particles, collective transport effects can be neglected. In the absence of magnetospheric motion it is relatively easy to treat the problems of particle transport as simple propagation of charged particles in a stationary magnetic field configuration using, for instance, trajectory calculations in model fields. The method here is to use correlated measurements of the particle distribution at two points along a dynamic trajectory, and in this way to learn something about the geomagnetic field. This approach provides a good basis from which to study magnetospheric dynamics. If the magnetosphere moves, large scale electric fields, turbulent electromagnetic fields and sources and sinks affect the propagation of energetic particles considerably. These effects change the distribution functionf k(p,r,t) and can thus be detected.In this paper, we shall show the importance of the single particle approximation (trajectories in a reference field) in forming the basis of our understanding of the quiet-time penetration of cosmic rays into the magnetosphere, we shall consider the steady dynamics such as wave-particle inter-action and field line reconnection, which is believed to exist nearly all the time, and finally we shall review the work which has been done in the much more complex and less well-understood field of impulsive dynamics such as geomagnetic storms and substorms. This last topic is only just beginning to be investigated in detail, and it is hoped that the study of impulsive dynamics, using energetic particles, may be as successful as the study of the quiet magnetosphere and the steady dynamics.  相似文献   

19.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

20.
We present the results of four observations made by the European Space Agency's EXOSAT Observatory of the X-ray transient 4U1630-47 during its 1984 outburst. We observed marked spectral changes as the source decayed from a maximum observed intensity of 8×10–9 erg/cm2/sec (1.5–10 keV). The spectrum could be modelled by a soft thermal-like component with a high energy power-law tail. The relative contribution of the soft to hard component decreased as the total luminosity decreased. We compare these changes with those observed from the black hole candidate Cyg X-1 when it transitions from a high to a low state. In addition we report the discovery of short timescale intensity variations (down to 50 msec) with a characteristic timescale of 20 sec. We present a precise position for this unidentified source.on leave from Università di Roma Dipartimento di Fisica G. Marconi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号